18.1.1 Несобственные интегралы I рода (интегралы по неограниченным промежуткам)

Пусть функция $f$ задана на промежутке $[a, +\infty)$, где $a \in R$, и интегрируема по Риману на каждом отрезке $[a, \xi)$, где $a \lt \xi \lt +\infty$. Выражение $\int_a^{+\infty} f(x) dx$ называют несобственным интегралом I рода. Если существует $\lim\limits_{\xi\to +\infty}\int_a^\xi f(x) dx$ то этот несобственный интеграл называют сходящимся, а его значение полагают равным:
$$\int_{a}^{\infty}f(x)dx=\lim_{\xi \to +\infty}\int_{a}^{\xi}f(x)dx.$$
Если же не существует конечного предела, то несобственный интеграл называют расходящимся.

Аналогично определяется несобственный интеграл:
$$\int_{-\infty}^{a}f(x)dx = \lim_{\eta\to -\infty}\int_{\eta}^{a}f(x)dx.$$

Пусть теперь функция $f$ задана на всей действительной прямой и интегрируема по Риману на любом отрезке $\left[\eta, \xi\right]$, где $ -\infty \lt \eta \lt \xi \lt +\infty.$
Если существует конечный двойной предел $\lim\limits_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_\eta^\xi f(x) dx$,то несобственный интеграл $\int_{-\infty}^{+\infty} f(x) dx$ называется сходящимся, а его значение полагают равным $$\int_{-\infty}^{+\infty}f(x)dx = \lim_{\substack{\xi\to +\infty\\ \eta\to-\infty}}\int_{\eta}^{\xi}f(x)dx.$$

Утверждение. Сходимость интеграла $\int_{-\infty}^{+\infty}f(x)dx$ равносильна тому, что сходятся оба интеграла $\int_{a}^{+\infty}f(x)dx$ и $\int_{-\infty}^{a}f(x)dx$, причем имеет место равенство $$\int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx$$
где a – произвольное действительное число.

Пусть при некотором $a \in R$ интегралы $\int_{a}^{+\infty}f(x)dx$ и $\int_{-\infty}^{a}f(x)dx$ сходятся. Тогда для $-\infty \lt \eta \lt \xi \lt +\infty$ будем иметь
$$\int_{\eta}^{\xi}f(x)dx = \int_{\eta}^{a}f(x)dx + \int_{a}^{\xi}f(x)dx$$
Отсюда, переходя к пределам при $\xi → +\infty$ и $\eta → -\infty$, получаем
$$\lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{\eta}^{\xi}f(x)dx = \lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{\eta}^{a}f(x)dx + \lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{a}^{\xi}f(x)dx=\\
= \int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx$$
т. е. интеграл $\int_{-\infty}^{+\infty}f(x)dx$ сходится и для него справедливо равенство $\int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx$.

Для доказательства обратного утверждения зафиксируем произвольное $a \in R$ и предположим, что существует
$$\int_{-\infty}^{+\infty}f(x)dx=\lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{\eta}^{\xi}f(x)dx.$$
Тогда, в силу критерия Коши существования двойного предела, отсюда
следует, что для любого $ \varepsilon\gt 0$ найдется такое $A$, что для любых $\xi^{\prime}, \xi^{\prime\prime} \gt A$ и для любых $\eta^{\prime},\eta^{\prime\prime}\lt −A$ справедливо неравенство
$$\left|\displaystyle\int_{\eta^{\prime}}^{\xi^{\prime}}f(x)dx — \int_{\eta^{\prime\prime}}^{\xi^{\prime\prime}}f(x)dx\right|\lt \varepsilon $$
Зафиксируем $\varepsilon \gt 0$ и найдем такое $A$. Можем считать, что $A\gt|a|$. Выберем $\eta=\eta^{\prime}=\eta^{\prime\prime}\lt −A$ и $\xi^{\prime}, \xi^{\prime\prime}\gt A$. Тогда получим
$$\left|\displaystyle\int_{\xi^{\prime}}^{\xi^{\prime\prime}}f(x)dx\right| = \left|\displaystyle\int_{\eta}^{\xi^{\prime}}f(x)dx — \int_{\eta}^{\xi^{\prime\prime}}f(x)dx\right|\lt \varepsilon, $$
т. е. выполнено условие критерия Коши существования предела
$$\lim_{\xi\to +\infty}\int_{a}^{\xi}f(x)dx.$$
Отсюда следует, что интеграл $\int_{a}^{+\infty}f(x)dx$ сходится. Аналогично получаем, что и интеграл $\int_{-\infty}^{a}f(x)dx$ также сходится. Имеем
$$\int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx = \lim_{\eta\to -\infty}\int_{\eta}^{a}f(x)dx + \lim_{\xi\to +\infty}\int_{a}^{\xi}f(x)dx =\\
= \lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\left(\displaystyle\int_{\eta}^{a}f(x)dx + \int_{a}^{\xi}f(x)dx\right) = \lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{\eta}^{\xi}f(x)dx = \int_{-\infty}^{+\infty}f(x)dx$$ Последний предел существует в силу условия, а выражение справа не
зависит от $a$. Тем самым доказано $\int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx$ для любого $a \in R$.

Пример 1. Вычислим $$\int_0^{+\infty}\frac{dx}{1+x^2} = \lim_{\xi\to +\infty}\int_{0}^{\xi}\frac{dx}{1+x^2}=\lim_{\xi\to +\infty} {\mathrm {arctg}}\,x\bigg|_0^{\xi} = \lim_{\xi\to +\infty}{\mathrm {arctg}}\,x=\frac{\pi}{2}.$$

Пример 2. Несобственный интеграл $\int_0^{+\infty}\sin x dx.$ расходится. В самом деле, $$\int_0^{\xi}\sin x dx =-\cos x \bigg|_0^{\xi}= 1-cos {\xi} $$ не имеет предела.

Примеры решения задач

Пример 1

Вычислить $\int_0^{+\infty}e^{-px}dx.$

\underline {Решение:}

$$\int_0^{+\infty}e^{-px}dx= -\frac{1}{p}e^{-px}\bigg|_0^{+\infty}=-\frac{1}{p}\lim_{x\to +\infty}(e^{-px}-1)= \begin{cases}
\frac{1}{p}, \text{если $p \gt 0$;} \\
+\infty, \text{если $p\lt 0$.}
\end{cases}$$ При $p \gt 0 \lim\limits_{x\to +\infty}e^{-px}= \lim\limits_{x\to +\infty}\frac{1}{e^{px}}=0$, так как $e^{px}\to+\infty$ при $x\to+\infty.$ При $p\lt 0 \lim\limits_{x\to +\infty}e^{-px} = +\infty.$

Таким образом, интеграл $\int_0^{+\infty}e^{-px}dx$ сходится при $p \gt 0$ и расходится при $p\lt 0.$

[свернуть]

Пример 2

При каких значениях показателя $\lambda \gt 0$ существует несобственный интеграл $\int_a^{+\infty}\frac{dx}{x^\lambda}, (a\gt 0).$

\underline {Решение:}

Пусть $\lambda\neq1$, тогда $$\int_a^{\xi}\frac{dx}{x^\lambda}=\frac{1}{1-\lambda}x^{1-\lambda}\bigg|_a^\xi=\frac{1}{1-\lambda} (\xi^{1-\lambda} — a^{1-\lambda}).$$
Это выражение при $\xi\to+\infty$ имеет предел $\infty$ ( $\lambda \lt 1$) или конечное число $\frac{1}{1-\lambda} a^{1-\lambda}$ ($\lambda \gt 1$).

Если $\lambda=1$, имеем $$\int_a^{\xi}\frac{dx}{x}=\ln(x)\bigg|_a^\xi=\ln(\xi)-\ln(a)$$ и при $\xi\to+\infty$ в пределе получается $+\infty$. Таким образом, интеграл $\int_a^{+\infty}\frac{dx}{x^\lambda}$ при $\lambda\gt 1$ сходится (и равен $\frac{1}{1-\lambda} a^{1-\lambda}$), а при $\lambda\leq 1$ расходится.

[свернуть]

Пример 3

Вычислить $\int_{-\infty}^{+\infty}\frac{dx}{1+x^2}.$

\underline {Решение:}

$$\int_{-\infty}^{+\infty}\frac{dx}{1+x^2}=\lim\limits_{x\to{+\infty}} {\mathrm {arctg}}\,x -\lim\limits_{x\to{-\infty}} {\mathrm {arctg}}\,x = \frac{\pi}{2} -(-\frac{\pi}{2})=\pi.$$

Интеграл $\int_{-\infty}^{+\infty}\frac{dx}{1+x^2}$ сходится и равен $\pi$.

[свернуть]

Несобственные интегралы по неограниченным промежуткам

Для закрепления пройденного материала предлагается пройти тест.

Литература

  1. Коляда В.И.,Кореновский А.А. Курс лекций по математическому анализу / В.И.Коляда.-Одесса: Изд-во «Астропринт», 2010. т.2. -С.102-105.
  2. Каплан И.А. Практические занятия по высшей математике / И.А.Каплан. -Харьков: Изд-во Харьковского университета, 1967. ч.3. -С.760-761.
  3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления/ Г.М.Фихтенгольц -Москва: Изд-во «Наука», 1969. т.2. -С.553.
  4. Лысенко З.М. Конспект лекций по математическому анализу.

18.1.2 Несобственные интегралы II рода (интегралы от неограниченных функций)

Пусть функция $f$ задана на полуинтервале $[a, b)$, где $-\infty\lt a \lt b \lt +\infty$ и интегрируема по Риману на любом отрезке $[a,\xi]$, где $a\lt\xi\lt b$. Если существует конечный предел $\lim\limits_{\xi\to b-0}\int_a^\xi f(x) dx$, то несобственный интеграл второго рода $\int_a^b f(x) dx$ называют сходящимся и полагают $$\int_a^b f(x) dx=\lim\limits_{\xi\to b-0}\int_a^\xi f(x) dx.$$ В противном случае несобственный интеграл называют расходящимся.

Замечание 1. Предполагается, что функция $f$ неограничена в любой левой полуокрестности точки $b$. Действительно, если функция $f$ ограничена на $[a, b)$ и интегрируема на каждом отрезке $[a,\xi]$ при любом $\xi\lt b$, то, используя критерий интегрируемости функции в смысле Римана в терминах колебаний, легко можно показать, что функция $f$ интегрируема по Риману на отрезке $[a, b]$ (в самой точке $b$ функцию можно доопределить произвольным образом и это не влияет ни на свойство функции быть интегрируемой, ни на величину интеграла Римана $\int_a^b f(x) dx)$.

Замечание 2. Если функция $f$ интегрируема по Риману на отрезке $[a, b]$, то, как было установлено ранее, интеграл с переменным верхним пределом $\varphi(\xi)=\int_a^\xi f(x) dx$ является непрерывной на $[a, b]$ функцией. В частности, существует $\lim\limits_{\xi\to b-0}\varphi(\xi)=\int_a^b f(x)dx$. Это означает, что для интегрируемой в смысле Римана функции интеграл в несобственном смысле также существует и их значения совпадают.

Если функция $f$ неограничена в любой левой полуокрестности точки $b$, то эту точку называют особой точкой и говорят, что в точке $b$ функция имеет особенность. Иногда это обозначают так: $\int_a^{(b)} f(x)dx$. Аналогично определяется $\int_{(a)}^b f(x)dx$ с особенностью в точке $a$. Т.е., полагаем
$$\int_{(a)}^b f(x)dx=\int_a^b f(x)dx=\lim\limits_{\eta\to a+0}\int_\eta^b f(x) dx,$$
если предел справа существует. В этом случае интеграл называют сходящимся, в противном случае – расходящимся.

Пример 1. У интеграла $\int_0^1\frac{dx}{\sqrt{1-x^2}}$ имеется особенность в точке $x=0$. Имеем
$$\int_{0}^1 \frac{dx}{\sqrt{1-x^2}}=\lim\limits_{\xi\to {1-0}} \int_{0}^{\xi} \frac{dx}{\sqrt{1-x^2}} = \lim\limits_{\xi\to {1-0}}\arcsin\xi = \arcsin 1=\frac{\pi}{2}.$$

Пример 2. Рассмотрим интеграл $\int_{0}^1\frac{dx}{x^ \alpha}.$ при $\alpha\gt 0$.
Он имеет особенность в точке $x=0$. При $\alpha\neq 1$ имеем: $$ \int_\eta^1 \frac{dx}{x^{\alpha}}=\frac{1}{1-{\alpha}} x^{1-{\alpha}}\bigg|_{\eta}^1=\frac{1}{1-{\alpha}}-\frac{\eta^{1-\alpha}}{1-{\alpha}},$$ а если $\alpha=1$, то $$ \int_{\eta}^1 \frac{dx}{x^{\alpha}}=\ln x\bigg|_\eta^1=\ln\frac{1}{\eta}.$$

Если $\alpha\lt 1$, то существует $$\lim\limits_{\eta \to {0+}}\int_{\eta}^1 \frac{dx}{x^{\alpha}} = \frac{1}{1-\alpha}.$$

Если же $\alpha\geqslant 1$, то предел $\lim\limits_{\eta \to {0+}}\int_{\eta}^1 \frac{dx}{x^{\alpha}}$ не существует. Следовательно, $$ \int_\eta^1 \frac{dx}{x^{\alpha}} = \frac{1}{1-{\alpha}} (\alpha\lt 1)$$
и интеграл расходится при $\alpha\geqslant 1$.

Интеграл с несколькими особенностями определяется как сумма интегралов по таким промежуткам, на каждом из которых имеется лишь одна особенность. При этом интеграл называют сходящимся, если сходятся все
интегралы указанной суммы. Если хотя бы один из них расходится, то и исходный интеграл называют расходящимся.

Пример. Интеграл $\int_{-\infty}^{+\infty}\frac {dx}{\sqrt{x} \sqrt[3]{x-1} \sqrt[4]{x-2}}$ определяется как
$$ \int_{-\infty}^{+\infty}\frac {dx}{\sqrt{x} \sqrt[3]{x-1} \sqrt[4]{x-2}}=\int_{-\infty}^a + \int_a^0 + \int_0^b + \int_b^1 + \int_1^c + \int_c^2 + \int_2^d + \int_d^{+\infty},$$ где $ -\infty \lt a \lt 0 \lt b \lt 1 \lt c \lt 2 \lt d \lt +\infty$.

Примеры решения задач

Пример 1

Вычислить интеграл $\int_{0}^1\frac{dx}{x}.$
\underline {Решение:}

Для данного интеграла особой точкой является точка $0$. $$\int_{0}^1 \frac{dx}{x}=\lim\limits_{\eta \to 0} \int_{\eta}^1 \frac{dx}{x}=\lim\limits_{\eta\to 0} \ln x \bigg|_{\eta}^1 = +\infty.$$

Интеграл $\int_{0}^1\frac{dx}{x}$ расходится.

[свернуть]

Пример 2

Вычислить интеграл $\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}.$
\underline {Решение:}

Для данного интеграла особыми точками являются точки $-1$ и $1$. $$\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}=\int_{-1}^0\frac{dx}{\sqrt{1-x^2}}+\int_{0}^1\frac{dx}{\sqrt{1-x^2}}=\frac{\pi}{2}+\frac{\pi}{2}={\pi}$$ (неопределенный интеграл для данной функции равен: $\int {\frac{dx}{\sqrt{1-x^2}}} = {\mathrm {arcsin}}\,x$.

Таким образом, интеграл $\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}$ сходится и равен $\pi$.

[свернуть]

Несобственные интегралы от неограниченных функций

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Литература

  1. Коляда В.И.,Кореновский А.А. Курс лекций по математическому анализу / В.И.Коляда.-Одесса: Изд-во «Астропринт», 2010. ч.2. -С.106-108.
  2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления / Г.М.Фихтенгольц.-Москва: Изд-во «Наука», 1964. т.2. -С.579.
  3. Кудрявцев Л.Д. Краткий курс математического анализа / Л.Д.Кудрявцев. -Москва: изд-во «Наука», 1989. -С.397.
  4. Лысенко З.М. Конспект лекций по математическому анализу.

4.1 Непрерывные функции. Определение и примеры

Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b)$. Говорят, что функция $f$ непрерывна в точке $x_0$, если $$\lim\limits_{x \to x_0}f(x) = f(x_0).$$

Замечание. В отличие от определения предела функции $f$ в точке $x_0$, здесь мы требуем, чтобы функция $f$ была определена не только в проколотой окрестности точки $x_0$, а в целой окрестности точки $x_0$. Кроме того, $\lim\limits_{x \to x_0}f(x)$ не просто существует, а равен определенному значению, а именно, $f(x_0)$.

Используя определение предела функции в смысле Коши, определение непрерывности функции $f$ в точке $x_0$ в кванторах можно записать следующим образом: $$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0: \forall x \in (a, b): |x — x_0| < \delta \Rightarrow \Big|f(x) — f(x_0)\Big| < \varepsilon.$$

В этом определении можно не требовать выполнения условия $|x — x_0| > 0$, т. к. при $|x − x_0| = 0$ неравенство $\Big|f(x) − f(x_0)\Big| < \varepsilon$, очевидно, выполнено.

Так как величина $\lim\limits_{x \to x_0}f(x)$ зависит лишь от тех значений, которые функция $f$ принимает в сколь угодно малой окрестности точки $x_0$, то непрерывность – это локальное свойство функции.

В терминах окрестностей определение непрерывности выглядит следующим образом.

Определение. Функция $f$ называется непрерывной в точке $x_0$, если для любой окрестности $V$ точки $f(x_0)$ найдется такая окрестность $U$ точки $x_0$, что для всех $x \in U$ значение $f(x) \in V$, т. е. $f\Big(U \cap (a, b)\Big) \subset V$.

Применяя определение предела функции в смысле Гейне, определение непрерывности можно сформулировать так.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется непрерывной в точке $x_0 \in (a, b)$, если любая последовательность аргументов $\{x_n\}$ $\Big(x_n \in (a, b), x_n \to x_0\Big)$ порождает последовательность значений функции $\{f(x_n)\}$, стремящуюся к $f(x_0)$.

Применяя понятие, одностороннего предела (т. е. предела слева и справа) в точке $x_0$, можно дать определения непрерывности слева (справа) в точке $x_0$. Именно, функция $f$ называется непрерывной слева (справа) в точке $x_0$, если $\lim\limits_{x \to x_0-0}f(x) = f(x_0)$ $\Big(\lim\limits_{x \to x_0+0}f(x) = f(x_0)\Big).$ При этом в определении непрерывности слева достаточно считать, что функция $f$ определена лишь в левой полуокрестности точки $x_0$, т. е. на $(a, x_0]$, а для
непрерывности справа – на $[x_0, b)$.

Легко видеть, что справедливо следующее

Утверждение. Для того чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0.$

Определение. Функция $f$, определенная на интервале $(a, b)$, называется разрывной в точке $x_0 \in (a, b)$, если $f$ не является непрерывной в этой точке.

Итак, функция $f$ является разрывной в точке $x_0$, если выполнено одно из двух следующих условий.

  1. Либо не существует $\lim\limits_{x \to x_0}f(x)$.
  2. Либо предел $\lim\limits_{x \to x_0}f(x)$ существует, но он не равен $f(x_0)$.

Пример 1. $f(x) ≡ C = Const$. Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$, т. к. для любого $x \in \mathbb{R}$ $\Big|f(x) − f(x_0)\Big| = 0$.

Пример 2. $f(x) = x^2$, $-\infty \lt x \lt +\infty$, $x_0 \in \mathbb{R}$. Зададим $\varepsilon > 0$. Тогда из неравенства $$|x^2 — {x_0}^2| \leqslant \Big(|x| + |x_0|\Big)|x − x_0|$$ следует, что при $|x − x_0| < \delta = \min\Big(1, \frac{\varepsilon}{2|x_0| + 1}\Big)$ справедливо неравенство $|x^2 — {x_0}^2| < \varepsilon$, т. е. $\lim\limits_{x \to x_0}x^2 = {x_0}^2$, а значит, функция $f(x) = x^2$ непрерывна в любой точке $x_0 \in \mathbb{R}$.

Пример 3. $f(x) = \sqrt{x}$, $0 \leqslant x \leqslant +\infty$ Если $x_0 \in (0, +\infty)$, то $$\Big|\sqrt{x} — \sqrt{x_0}\Big| = \frac{|x — x_0|}{\sqrt{x} + \sqrt{x-0}} \leqslant \frac{1}{\sqrt{x_0}}|x — x_0| \lt \varepsilon$$ если только $|x − x_0| \lt \delta \equiv \sqrt{x_0} \cdot \varepsilon$. Таким образом, функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 \gt 0$. В точке $x_0 = 0$ можно ставить вопрос о непрерывности справа. Имеем $\Big|\sqrt{x} — \sqrt{0}\Big| = \sqrt{x} \lt \varepsilon$, если только $0 \leqslant x \lt \delta \equiv \varepsilon^2$. Итак, $\lim\limits_{x \to 0+}\sqrt{x} = 0 = \sqrt{0}$, т. е. функция $f(x) = \sqrt{x}$ непрерывна справа в точке $0$.

Пример 4. $f(x) = \sin x$, $-\infty \lt x \lt +\infty$. Пусть $x_0 \in \mathbb{R}$. Тогда $$|\sin x − \sin x_0| = \bigg|2\cos{\frac{x + x_0}{2}}\sin{\frac{x — x_0}{2}}\bigg| \leqslant 2\bigg|\sin{\frac{x — x_0}{2}}\bigg| \leqslant |x — x_0|,$$ где последнее неравенство в этой цепочке следует из доказанного выше неравенства $|\sin t| \leqslant |t|$ ($0 \lt |t| \lt \frac{\pi}{2}$). Можем считать, что $|x − x_0| \lt \pi$. Тогда при $|x − x_0| \lt \delta \equiv \min(\pi, \varepsilon)$ справедливо $|\sin{x} − \sin{x_0}| \lt \varepsilon$, т. е. функция $f(x) = \sin{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$. Аналогично доказываем, что функция $f(x) = \cos{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Пример 5. $f(x) = x \cdot \sin{\frac{1}{x}}$ при $x \neq 0$ и $f(0) = 0$. Покажем, что функция $f$ непрерывна в точке $x_0 = 0$. Имеем $f(0) = 0$ и $$\lim\limits_{x \to 0}f(x) = \lim\limits_{x \to 0}x\sin{\frac{1}{x}} = 0$$ (т. к. $\Big|f(x) − 0\Big| = \Big|x\sin{\frac{1}{x}}\Big| \leqslant |x| \lt \varepsilon$, если только $|x − 0| = |x| \lt \delta \equiv \varepsilon$). Итак, $\lim\limits_{x \to x_0}f(x) = f(0)$, так что $f$ непрерывна в точке $0$.

Пример 6. $f(x) = \text{sign}\;x$, $x \in \mathbb{R}$. Если $x_0 \neq 0$, то функция $f$ постоянна в некоторой окрестности точки $x_0$ и, следовательно, непрерывна в этой точке. Если же $x_0 = 0$, то не существует предела функции $f$ при $x \to 0$. Значит, функция $f$ разрывна в точке $0$. Более того,$\lim\limits_{x \to 0+}\text{sign}\; x = 1$, $\lim\limits_{x \to x_0}f(x)\text{sign}\;x = −1$, $\text{sign}\;0 = 0$, так что функция $\text{sign}\; x$ разрывна в точке $0$ как слева, так и справа.

Пример 7. Рассмотрим функцию Дирихле $$\mathcal{D}(x) =
\begin{cases}
1, & \text{если $x \in \mathbb{Q}$;} \\
0, & \text{если $x \in {\mathbb{R} \backslash \mathbb{Q}}$.}
\end{cases}$$ Пусть $x_0 \in \mathbb{R}$. Покажем, что не существует предела функции $\mathcal{D}$ при $x \to x_0$. Для этого выберем последовательность $\{x^\prime\}$ отличных от $x_0$ рациональных чисел, стремящуюся к $x_0$. Тогда $\mathcal{D}(x^\prime_n) = 1$ и, значит, $\lim\limits_{n \to +\infty}\mathcal{D}(x^\prime_n) = 1$. Если же взять последовательность ${x^{\prime\prime}_n}$ отличных от $x_0$ иррациональных чисел, стремящуюся к $x_0$, то получим, что $\mathcal{D}(x^{\prime\prime}_n) = 0$ и $\lim\limits_{n \to +\infty}\mathcal{D}(x^{\prime\prime}_n) = 0$. В силу определения предела функции по Гейне получаем, что функция $\mathcal{D}$ не имеет предела в точке $x_0$. Так как $x_0 \in \mathbb{R}$ – произвольная точка, то это означает, что функция Дирихле разрывна в каждой точке.

Пример 8. $f(x) = x \cdot \mathcal{D}(x)$, $x \in \mathbb{R}$. Функция $f$ разрывна в каждой точке $x_0 \neq 0$. В самом деле, если $\{x^\prime_n\}$ и $\{x^{\prime\prime}_n\}$ соответственно последовательности рациональных и иррациональных отличных от $x_0$ чисел, стремящиеся к $x_0$, то $\lim\limits_{n \to \infty}f(x^{\prime}_n) = x_0$ и $\lim\limits_{n \to \infty}f(x^{\prime\prime}_n) = 0$, так что, в силу определения предела функции по Гейне, функция $f$ не имеет предела в точке $x_0$. Если же $x_0 = 0$, то $\lim\limits_{n \to 0}f(x) = 0 = f(0)$. Действительно, $|f(x)| = |x \cdot \mathcal{D}(x)| \leqslant |x| \lt \varepsilon$, если только $|x − 0| = |x| \lt \delta \equiv \varepsilon$. Это означает, что данная функция непрерывна в единственной точке $x_0 = 0$.

Пример 9. Дана функция $$f(x) =
\begin{cases}
\frac{\sin x}{x}, & \text{если $x \neq 0$;} \\
1, & \text{если $x = 0$.}
\end{cases}$$ Проверить на непрерывность в точке $x_0 = 0$.

Решение

$$\lim\limits_{x \to x_0 — 0}\frac{\sin x}{x} = \lim\limits_{x \to 0 + 0}\frac{\sin x}{x} = 1 = f(x_0)$$ Отсюда следует, что $f(x)$ непрерывна в точке $x_0$, т. к. для того чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0.$

Пример 10. Покажите, что функция $f(x) = \frac{x + 3}{x — 2}$ разрывна в точке $x_0 = 2.$

Решение

Для этого достаточно показать, что предел данной функции при $x \to x_0$ либо не равен значению функции в точке $x_0$, либо не существует. $$\lim\limits_{x \to 2 — 0}\frac{x + 3}{x — 2} = -\infty$$ $$\lim\limits_{x \to 2 + 0}\frac{x + 3}{x — 2} = +\infty$$ Т. к. левосторонний и правосторонний пределы $f(x)$ не совпадают, то предела функция в точке $x_0$ не имеет, следовательно она разрывна в этой точке.

Литература

Непрерывные функции. Определение и примеры

Тест по теме: «Непрерывные функции. Определение и примеры.»


Таблица лучших: Непрерывные функции. Определение и примеры

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

17.2 Вычисление радиуса сходимости степенного ряда

Теорема. Пусть дан степенной ряд $$\begin{equation}\sum\limits_{n=0}^\infty a_nx^n\label{eq:1} \end{equation}$$ Если существует $$\lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|} \equiv p \gt 0,$$ то радиус сходимости ряда $\eqref{eq:1}$ равен $R = \frac{1}{p}$. Если для любого $n$ числа $a_n \neq 0$ и существует $$\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| \equiv p^* \gt 0,$$ то $$R = \frac{1}{p^*} = \lim\limits_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|.$$

Для доказательства первого утверждения применим признак Коши. Для фиксированного $x$ имеем $$\sqrt[n]{\left|a_nx^n\right|} = \sqrt[n]{a_n}\cdot\left|x\right|\to p\left|x\right|\left(n\to\infty\right). $$Если $\left|x\right|\lt\frac{1}{p}$, то $ρ\left|x\right|\lt 1$ и, по признаку Коши, ряд $\eqref{eq:1}$ сходится абсолютно. Если $\left|x\right|\gt\frac{1}{p}$, то $p\left|x\right|\gt 1$ и, следовательно, ряд $\eqref{eq:1}$ расходится, т. к. не выполнено необходимое условие сходимости.
Доказательство второго утверждения теоремы легко можно провести аналогично, используя признак Даламбера (проведите самостоятельно). Мы покажем, что из существования предела $ρ^∗$ следует существование предела $ρ$ и их равенство $ρ = ρ^∗$. Ясно, что отсюда также будет следовать второе утверждение теоремы.
Зададим $\epsilon \gt 0$ и найдем такой номер $N$, что для всех $n \geq N$ справедливо неравенство $$\left|\left|\frac{a_{n+1}}{a_n}\right|-p^*\right|\lt\epsilon.$$ Тогда $$p^*-\epsilon\lt\left|\frac{a_{n+1}}{a_n}\right|\lt p^*+\epsilon$$ т. е.
$$\left|a_n\right|\left(ρ^∗−\epsilon\right)\lt\left|a_{n+1}\right|\lt\left|a_n\right|\left(ρ^∗+\epsilon\right).$$ Применяя рекуррентно левое неравенство, получаем $$\left|a_{N+1}\right|\gt\left(ρ^∗−\epsilon\right)\left|a_N\right|,$$ $$\left|a_{N+2}\right|\gt\left(ρ^∗\epsilon\right)^2\left|a_N\right|,\dotsi,\left|a_{N+k}\right|\gt\left(ρ^∗-\epsilon\right)^k\left|a_N\right|,\dotsi,$$ а из правого неравенства следует, что $$\left|a_{N+k}\right|\lt\left(ρ^∗+\epsilon\right)^k\left|a_N\right| \left(k = 1, 2,\dotsi\right).$$
Пусть $n\gt N$, т. е. $n = N+k$, где $k\in N$. Тогда $$\sqrt[n]{\left|a_n\right|}\lt\left(ρ^∗+\epsilon\right)^{\frac{n−N}{n}}\left|a_N\right|^{\frac{1}{n}} = (ρ^∗+\epsilon)^{1-\frac{N}{n}}\sqrt[n]{\left|a_N\right|}.$$ При фиксированном $N$ выражение справа стремится к $ρ^∗+\epsilon$ при $n\to\infty$. Поэтому при $n\geq N_1$ оно меньше, чем $ρ^∗+2\epsilon$. Аналогично можно показать, что при $n\geq N_2$ справедливо неравенство $\sqrt[n]{\left|a_n\right|}\gt ρ^∗−2\epsilon$. Получим, что при $n\geq N_3 \equiv max \left(N_1, N_2\right)$ имеет место неравенство $$ρ^∗−2\epsilon\lt\sqrt[n]{\left|a_n\right|}\lt ρ^∗+2\epsilon,$$ а это означает, что существует $$ρ\equiv \lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|} = ρ^∗.$$

Замечание 1. Если в условии теоремы считать, что $\frac{1}{0} = +\infty$ и $\frac{1}{+\infty} = 0$, то теорема остается справедливой и в случаях $ρ = 0$ и $ρ = +\infty$. При этом необходимые изменения в доказательстве очевидны (проведите самостоятельно).

Замечание 2. Во второй части доказательства нашей теоремы мы,
по существу, доказали, что из существования $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}\left(a_n\gt 0\right)$ следует, что существует и $\lim\limits_{n\to\infty}\sqrt[n]{a_n}$, и эти пределы равны. Для рядов с
положительными слагаемыми это означает, что признак Коши не слабее
признака Даламбера.

Итак, мы можем находить радиус сходимости $R = \frac{1}{ρ}$ степенного ряда $\eqref{eq:1}$ в случае если существует $$ρ = \lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|},$$ где $0\leq ρ\leq +\infty$. Но предел $ρ$ может и не существовать. В общем случае радиус сходимости ряда $\eqref{eq:1}$ находится следующим образом.

Теорема Коши – Адамара. Пусть дан степенной ряд $$\begin{equation}\sum\limits_{n=0}^\infty a_nx^n.\label{eq:2} \end{equation}$$ Тогда его радиус сходимости равен $$R =\dfrac{1}{\overline{\lim\limits_{n\to\infty}}\sqrt[n]{\left|a_n\right|}},$$ где понимается $\frac{1}{0} = +\infty$ и $\frac{1}{+\infty} = 0$.

Доказательство этой теоремы основано на применении обобщенного признака Коши сходимости рядов с положительными слагаемыми.

Теорема (обобщенный признак Коши). Пусть дан числовой ряд $$\begin{equation}\sum\limits_{n=0}^\infty u_n,\label{eq:3} \end{equation}$$ где числа $u_n \geq 0$. Если $\overline{\lim\limits_{n\to\infty}}\sqrt[n]{u_n}\lt 1$, то ряд $\eqref{eq:3}$ сходится, а если $\overline{\lim\limits_{n\to\infty}}\sqrt[n]{u_n}\gt 1$, то ряд $\eqref{eq:3}$ расходится.

Если $\overline{\lim\limits_{n\to\infty}}\sqrt[n]{u_n}\gt 1$, то существует подпоследовательность номеров $n_k$, таких, что $u_{n_k}\geq 1$, а значит, $u_n$ не стремится к нулю, и следовательно, ряд $\eqref{eq:3}$ расходится, т. к. не выполнено необходимое условие сходимости. Если же $\overline{\lim\limits_{n\to\infty}}\sqrt[n]{u_n}\equiv q\lt 1$, то для $0\lt\epsilon\lt 1−q$ найдется такой номер $N$, что для всех $n\geq N$ справедливо неравенство $\sqrt[n]{u_n}\lt q+\epsilon\lt 1$. Отсюда следует, что $u_n\lt\left(q+\epsilon\right)n$ при $n \geq N$ и, значит, ряд $\eqref{eq:3}$ сходится в силу признака сравнения.

(Теоремы Коши – Адамара). Имеем $$\overline{\lim\limits_{n\to\infty}}\sqrt[n]{\left|a_nx^n\right|} = \overline{\lim\limits_{n\to\infty}}\sqrt[n]{\left|a_n\right|}\cdot\left|x\right|.$$ Если $\left|x\right|\gt\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|}}$,
то для ряда $\sum\limits_{n=0}^\infty\left|a_nx^n\right|$ не выполнено необходимое условие сходимости.
Следовательно, необходимое условие сходимости не выполнено и для ряда
$\eqref{eq:2}$, т. е. он расходится.

Примеры:

Пример 1. Рассмотрим ряд $$\sum\limits_{n=0}^\infty nx^n.$$ Здесь $a_n = n, \lim\limits_{n\to\infty}\sqrt[n]{a_n} = \lim\limits_{n\to\infty}\sqrt[n]{n} = 1$, т. е. $R = \dfrac{1} {\lim\limits_{n\to\infty}\sqrt[n]{a_n}} = 1$. В точках $x = R = 1$ и $x = −R = −1$ ряд расходится. Область его сходимости
– интервал$\left(−1, 1\right)$.
Пример 2. Для ряда $$\sum\limits_{n=0}^\infty\left[3 + (−1)n\right]^nx_n$$
имеем $a_n = [3 + (−1)n]^n$, $\overline\lim\limits_{n\to\infty}\sqrt[n]{a_n} = \overline\lim\limits_{n\to\infty}\left[3 + (−1)n\right] = 4$, $R = \frac{1}{4}$. Данный ряд сходится при $\left|x\right|\lt\frac{1}{4}$. Если $x = \pm\frac{1}{4}$, то $\left|a_{2k}x^{2k}\right|= 4^{2k}\frac{1}{4^{2k}} = 1$, т. е. слагаемые с четными номерами равны $1$ и
предел слагаемых ряда не равен нулю. Окончательно, область сходимости
ряда – интервал $\left(−\frac{1}{4}, \frac{1}{4}\right)$.
Пример 3. Для ряда $$\sum\limits_{n=0}^\infty\frac{\left(n!\right)^2}{\left(2n!\right)}x^n$$ имеем $a_n = \frac{\left(n!\right)^2}{\left(2n!\right)}$,$\lim\limits_{n\to\infty}\dfrac{\frac{\left(\left(n+1\right)!\right)^2}{\left(2\left(n+1\right)\right)!}}{\frac{\left(n!\right)^2}{\left(2n\right)!}} = \lim\limits_{n\to\infty}\frac{\left(\left(n+1\right)!\right)^2\left(2n\right)!}{\left(2n+2\right)!\left(n!\right)^2} = \lim\limits_{n\to\infty}\frac{\left(n+1\right)^2}{\left(2n+1\right)\left(2n+2\right)} = \frac{1}{4}$, $R = 4$. Данный ряд сходится при $\left|x\right|\lt 4$.
При $x = 4$ получаем числовой ряд $\sum\limits_{n=1}^\infty a_n$, где $a_n = \frac{\left(n!\right)^24^n}{\left(2n\right)!}$. Поскольку $\frac{a_n}{a_{n+1}} = 1-\frac{1}{2n}+\frac{1}{2n\left(n+1\right)}$, то $a_n\lt a_{n+1}$. Это означает, что последовательность $\left(a_n\right)$ монотонно возрастает. Следовательно не выполняется необходимое условие для сходимости ряда (предел общего члена отличен от нуля), ряд расходится. Аналогично для $x = -4$. Окончательно, область сходимости
ряда – интервал $\left(−4, 4\right)$.
Пример 4. Рассмотрим ряд $$\sum\limits_{n=0}^\infty \left(1+\frac{1}{n}\right)^{n^2}x^n.$$ $\frac{1}{R} = \lim\limits_{n\to\infty}\left(1+\frac{1}{n}\right)^{n^2} = e^2$. Следовательно при $\left|x\right|\lt \frac{1}{e^2}$ сходится абсолютно. В точках $x = R = \frac{1}{e^2}$ и $x = −R = −\frac{1}{e^2}$ ряд расходится. Область его сходимости
– интервал$\left(−\frac{1}{e^2}, \frac{1}{e^2}\right)$.

Тест по теме: "Радиус сходимости числового ряда"

Небольшой тест по теории и практике.

Литература

  1. Б. П. Демидович Сборник задач по математическому анализу 13-е издание, исправленное Издательство Московского университета Издательство ЧеРо 1997 отдел V ряды (ст. 284)
  2. В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2010, ч.2. раздел 17 «Вычисление радиуса сходимости степенного ряда». (ст. 56 — 60)
  3. Кудрявцев Л. Д. курс математического анализа : учебник для вузов: В 3 т. Т. 2. Радиус сходимости и круг сходимости степенного ряда / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дорфа, 2003. — 720 с. (ст. 107 — 108).

5.8.3 Выпуклые функции и точки перегиба

Определение. Определенная на интервале $I$ функция $f$ называется выпуклой (выпуклой вниз) на $I$, если для любых $x^\prime, x^{\prime\prime} \in I $ и любого числа $\lambda (0 < \lambda < 1)$ выполняется неравенство
$$f (\lambda x^\prime + (1− \lambda )x^{\prime\prime}) \leqslant \lambda f (x^\prime ) + (1− \lambda )f (x^{\prime\prime}).$$

С геометрической точки зрения смысл выпуклости состоит в том, что все точки дуги графика функции $y = f(x)$ расположены не выше хорды, соединяющей концы этой дуги. Действительно, отрезок, соединяющий точки $(x^\prime , f (x^\prime ))$ и $(x^{\prime\prime} , f (x^{\prime\prime})),$ имеет вид
$$l(x) = f (x^\prime) + \frac{f (x^{\prime\prime})− f (x^\prime )}{x^{\prime\prime}− x^\prime}(x− x^\prime ).$$
При $0 <  \lambda < 1$ точка $x = \lambda x^\prime + (1− \lambda)x^{\prime\prime}$ принадлежит интервалу с концами $x^\prime$ и $x^{\prime\prime}.$ При этом неравенство, определяющее понятие выпуклости, принимает такой вид: $f(x) \leqslant l(x).$
Обозначим $x = \lambda x^\prime + (1 − \lambda)x^{\prime\prime}.$ Тогда $  \lambda = \frac{x^{\prime\prime}−x}{x^{\prime\prime}− x^\prime }, 1− \lambda = \frac{x−x^\prime }{x^{\prime\prime}−x^\prime}.$ Поэтому определение выпуклости можно переписать в таком виде: функция $f$ называется выпуклой на интервале $I$, если для любых точек $x^\prime , x^{\prime\prime} \in I,$ таких, что $x^\prime < x^{\prime\prime}, $ и для любого $x \in [x^\prime , x^{\prime\prime}] $справедливо неравенство
$$f(x) \leqslant f (x^\prime ) \frac{x^{\prime\prime}− x}{x^{\prime\prime}− x^\prime}+ f (x^{\prime\prime}) \frac{x− x^\prime}{x^{\prime\prime}− x^\prime}.$$
Если в определении выпуклости нестрогое неравенство заменить строгим, то получим определение строгой выпуклости вниз. С геометрической точки зрения строгая выпуклость означает, что, кроме выпуклости, график функции не содержит линейных отрезков.

Пример 1. Функция $f(x) = x,$ очевидно, выпукла вниз на всей числовой прямой.

Пример 2. Пусть $f(x) = x^2.$ Выберем произвольные $x^\prime < x^{\prime\prime}.$ Тогда для $0 < \lambda < 1$ имеем
$$(\lambda x^\prime + (1− \lambda) x^{\prime\prime} )^2 = \lambda^2 {x^\prime}^2 + 2 \lambda (1− \lambda )x^\prime x^{\prime\prime} + (1− \lambda)^2 {x^{\prime\prime}}^2 =$$
$$= \lambda {x^\prime}^2 +(1− \lambda){x^{\prime\prime}}^2 + {x^\prime}^2 ( \lambda^2− \lambda) +{x^{\prime\prime}}^2 [(1− \lambda)^2− (1− \lambda)] +2 \lambda (1− \lambda) x^\prime x^{\prime\prime} =$$

$$= \lambda {x^\prime}^2 + (1- \lambda ){x^{\prime\prime}}^2- [ \lambda (1- \lambda ) {x^{\prime}}^2 + \lambda (1- \lambda ) {x^{\prime\prime}}^2- 2 \lambda (1- \lambda ) x^\prime x^{\prime\prime} ] =$$

$$= \lambda {x^\prime}^2 + (1- \lambda ) {x^{\prime\prime}}^2- \lambda ( 1- \lambda ) ( x^\prime- x^{\prime\prime} )^2 < \lambda {x^\prime}^2 + (1- \lambda) {x^{\prime\prime}}^2$$

Это означает, что функция $f(x) = x^2$ строго выпукла вниз на $(− \infty, + \infty).$

Определение. Заданная на интервале $I$ функция $f$ называется вогнутой (выпуклой вверх) на этом интервале, если для любых $x^\prime, x^{\prime\prime} \in I$ и для любого $ \lambda (0 < \lambda < 1) $ справедливо неравенство

$$f( \lambda x^\prime + (1 — \lambda) x^{\prime\prime}) \geqslant \lambda f(x^\prime) + (1 — \lambda) f(x^{\prime\prime}).$$

Ясно, что если $f$ выпукла вниз, то функция − $f$ выпукла вверх. Поэтому достаточно изучить свойства лишь выпуклых вниз (т. е. выпуклых) функций.

Теорема 1. Пусть функция $f$ выпукла на интервале $I.$ Тогда $f$ непрерывна на $I$ и в каждой точке имеет конечные левую и правую производные.

Зафиксируем точку $x_0 \in I.$ Из существования конечных односторонних производных $ f’_{-} (x_0) $ и $ f’_{+} (x_0)$ следует непрерывность $f$ в точке $x_0.$
Докажем, что существует $ f’_{+} (x_0).$ Пусть $0 < h_1 < h_2$ таковы, что $x_0 + h_2 \in I.$ Тогда, в силу выпуклости $f,$
$$ f (x_0 + h_1 ) \leqslant f (x_0) \frac{h_2- h_1}{h_2} + f (x_0 + h_2 ) \frac{h_1}{h_2},$$
откуда
$$ \frac{f (x_0 +h_1)- f (x_0)}{h_1} \leqslant \frac{f(x_0 + h_2)- f (x_0)}{h_2}$$ Это неравенство означает, что функция  $ \varphi(h) = \frac{f (x_0 + h)- f (x_0)}{h} $ убывает при убывании $h$ к нулю справа. Покажем, что $\varphi$ ограничена снизу. Пусть $ \delta > 0$  такое, что $x_0- \delta \in I.$ Тогда, в силу выпуклости $f,$ для любого $h > 0$ $$ f (x_0) \leqslant f ( x_0- \delta ) \frac{h}{h + \delta } + f (x_0 + h) \frac{\delta }{ h + \delta },$$ откуда
$$ \frac{f (x_0)- f (x_0- \delta)}{ \delta } \leqslant \frac{f (x_0 + h)- f (x_0)}{h} = \varphi (h),$$ т. е. для любого $h > 0$ справедливо неравенство $$ \varphi (h) \geqslant \frac{f (x_0)- f (x_0- \delta)}{ \delta }, $$ т. е. $\varphi (h)$ ограничена снизу.
Итак, функция $\varphi (h)$ при убывающем $h,$ стремящемся к нулю справа, убывает и ограничена снизу. Следовательно, существует $$ f’_{+} (x_0) = \lim_{h \to 0+} \frac{f (x_0 + h )- f (x_0)}{h} = \lim_{h \to 0+}{ \varphi (h) }.$$
Аналогично можно показать, что существует $f’_{-} (x_0).$

Замечание. Из выпуклости функции не следует ее дифференцируемость. Например, функция $f(x) = |x|$ выпукла, но не дифференцируема в нуле. Теорема 1 утверждает, что у выпуклой функции существуют лишь односторонние производные. Анализируя доказательство теоремы 1, легко установить, что для выпуклой вниз функции $f$ в каждой точке $x_0$ справедливо неравенство $f’_{+} (x_0) \geqslant f’_{-} (x_0).$ Можно доказать, что выпуклая функция дифференцируема всюду, за исключением, быть может, не более чем счетного множества точек.

Теорема 2. Пусть функция $f$ выпукла вниз на интервале $(a, b),$ где $−\infty < a < b < +\infty.$ Тогда $f$ ограничена снизу.

Предположим противное. Тогда найдется последовательность точек $x_n \in (a, b),$ таких, что $f (x_n) <−n.$ Так как $ \{x_n\}$ ограниченная последовательность, то можем выделить сходящуюся подпоследовательность $\{x_{n_k}\}.$ Пусть $x_0 = \lim_{k \to \infty}  x_{n_k}.$ Точка $x_0 \in [a, b]$ (она не обязана принадлежать $(a, b)$). Тогда либо слева от $x_0,$ либо справа от $x_0$ найдется бесконечно много элементов нашей подпоследовательности $\{x_{n_k}\},$ из которой можно выделить монотонную подпоследовательность. Обозначим ее через $\{y_k\}_{k \geqslant 0}.$ Рассмотрим случай, когда $\{y_k\}$ возрастает. Пусть $f (y_k) = −m_k \to −\infty$ при $k \to \infty.$ Обозначим $z_0 = \frac{1}{2} (y_0 + x_0) \in (a, b).$ Тогда, начиная с некоторого номера $N,$ будем иметь $z_0 \in [y_0, y_n]$ при $n \geqslant N.$
В силу выпуклости $f,$ для $n \geqslant N$ получаем $$f(z_0) \leqslant f (y_0) \frac{y_n- z_0}{y_n- y_0} + f (y_n) \frac{z_0- y_0}{y_n- y_0}.$$ Поскольку правая часть этого неравенства стремится к  $−\infty$ при $n \to \infty,$ то получаем противоречие с тем, что значение $f (z_0)$ конечно.

Замечание. Выпуклая вниз на ограниченном интервале функция не обязана быть ограниченной сверху. Например, функция $f(x) = \frac{1}{x}$ выпукла вниз на $(0, 1)$ и неограничена сверху на этом интервале.
Также выпуклая вниз на неограниченном интервале функция не обязана быть ограниченной снизу. Например, функция $f(x) = \ln \frac{1}{x}$ выпукла вниз на $(0, +\infty)$ и неограничена снизу.

Теорема 3 (критерий выпуклости дифференцируемой функции). Пусть функция $f$ дифференцируема на интервале $I.$ Для того чтобы $f$ была выпуклой вниз на $I,$ необходимо и достаточно, чтобы ее производная $f’$ была возрастающей на $I.$

Необходимость. Пусть $x_1 < x < x_2 .$ Тогда, как было показано при доказательстве теоремы 1, выпуклость функции $f$ равносильна такому неравенству: $$ \frac{f(x)- f(x_1)}{x — x_1} \leqslant \frac{f(x_2)- f(x)}{x_2 -x} \quad \quad (5.5)$$Устремляя $ x \to x_1 + 0,$получаем$$ f’ (x_1) = f’_{+} (x_1) = \lim_{x \to x_1 + 0} \frac{f(x)- f(x_1)}{x- x_1} \leqslant \frac{f(x_2) — f(x_1)}{x_2- x_1}.$$ С другой стороны, если устремим $x \to x_2 − 0,$ то получим $$ f’ (x_2) = f’_{-} (x_2) = \lim_{x \to x_2- 0} \frac{f (x_2)- f (x)}{x_2- x} \geqslant \frac{f (x_2) — f (x_1)}{x_2 — x_1}.$$ Из двух последних неравенств следует, что $$ f’ (x_1) \leqslant f’ (x_2).$$

Достаточность.  Пусть $x_1 < x < x_2.$ Так как выпуклость $f$ равносильна (5.5), то достаточно показать, что справедливо неравенство (5.5).
По теореме Лагранжа,$$ \frac{f (x)- f (x_1)}{x- x_1} = f'(\xi_1), \frac{f (x_2) — f (x)}{x_2- x} = f'(\xi_2), $$
где $x1 < \xi_1 < x < \xi_2 < x_2,$ т. е. $\xi_1 < \xi_2.$ Отсюда следует (5.5).$\quad \square $

Замечание. При доказательстве достаточности мы получили, что $\xi_1 < \xi_2.$ Если производная $f’$ строго возрастает на $I,$ то $f’ (\xi_1) < f’ (\xi_2),$ откуда следует

$$ \frac{f (x)- f (x_1)}{x- x_1} < \frac{f (x_2) — f (x)}{x_2- x}.$$Это означает, что функция $f$ выпукла строго. Справедливо также и обратное, т. е. из строгой выпуклости дифференцируемой функции следует, что ее производная $f’$ строго возрастает. Действительно, в силу доказанной теоремы 3, из строгой выпуклости $f,$ в силу теоремы Лагранжа, следует неравенство$$ f’ (x_1) \leqslant f’ (\xi_1) = \frac{f (x)- f (x_1)}{x- x_1} < \frac{f (x_2) — f (x)}{x_2- x} = f’ (\xi_2) \leqslant f'(x_2), $$где $x_1 < x < x_2$ – произвольные точки из $I,$ а точки $\xi_1 \in (x_1, x), \xi_2 \in (x, x_2).$ Отсюда следует, что $f’ (x_1) < f’ (x_2).$

Теорема 4 (критерий выпуклости дважды дифференцируемой функции). Пусть функция $f$ дважды дифференцируема на интервале $I.$ Для того чтобы $f$ была выпуклой вниз на $I,$ необходимо и достаточно, чтобы было выполнено неравенство $f^{\prime\prime} (x) \geqslant 0 (x \in I).$
Эта теорема мгновенно вытекает из теоремы 3 и критерия монотонности дифференцируемой функции, примененного к $f’$ .

Замечание. Если в условии теоремы 4 производная $f^{\prime\prime} > 0,$ то $f’$ строго возрастает, и поэтому, в силу замечания к теореме 3, функция $f$ строго выпукла на $I.$ Обратное, однако, неверно. Из строгой выпуклости $f$ не следует, что $f^{\prime\prime} > 0.$ Например, функция $f(x) = x^4$ строго выпукла на $(− \infty, + \infty),$ однако $f’ (x) = 4x^3 , f^{\prime\prime}(x) = 12x^2$ и $f^{\prime\prime}(0) = 0.$

Пример 1. Пусть $f(x) = x^\alpha (0 < x < +\infty).$ Тогда $ f’ (x) =  \alpha x ^{ \alpha−1} , f^{\prime\prime}(x) = \alpha (\alpha − 1) x^{\alpha −2}.$ Если $ \alpha \in (0, 1), $ то $ f^{\prime\prime}(x) < 0$ и $f$ вогнута (выпукла вверх). Если $ \alpha \in (− \infty, 0) \cup (1, + \infty),$ то $ f^{\prime\prime}(x) > 0 $ и $f$ выпукла вниз.

Пример 2. Для функции $f(x) = \sin x$ имеем $f’ (x) = \cos x, f^{\prime\prime}(x) =− \sin x.$ При $x \in (2k\pi,(2k + 1)\pi)$ имеем $f^{\prime\prime}(x) < 0,$ т. е. $f$ выпукла вверх, а при $x \in ((2k− 1)\pi, 2k\pi)$ имеем $f^{\prime\prime}(x) > 0,$ т. е. $f$ выпукла вниз.

Точки перегиба. Точкой перегиба называется такая точка графика функции $y = f(x),$ которая разделяет его выпуклую и вогнутую части.

Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b).$ Если на $(a, x_0)$ функция $f$ выпукла, а на $(x_0, b)$ – вогнута, или на $(a, x_0) f$ вогнута, а на $(x_0, b)$ – выпукла, то точка $(x_0, f (x_0))$ называется точкой перегиба функции $f.$

Если существует $f^{\prime\prime} (x_0)$ и $(x_0, f (x_0))$ – точка перегиба, то $f^{\prime\prime} (x_0) = 0.$ Действительно, существование $f^{\prime\prime} (x_0)$ предполагает существование $f’ (x)$ в некоторой окрестности точки $x_0.$ Если при переходе через точку $x_0$ функция $f$ меняет характер выпуклости, то, согласно теореме 3, при переходе через точку $x_0$ производная $f’ (x)$ меняет характер монотонности. Значит, в точке $x_0$ производная $f’ (x)$ имеет экстремум, откуда, в силу теоремы Ферма, $f^{\prime\prime} (x_0) = 0.$

Однако условие $f^{\prime\prime} (x_0) = 0$ не означает, что $(x_0, f (x_0))$ – точка перегиба функции $f.$ Например, для функции $f(x) = x^4$ имеем $f^{\prime\prime}(0) = 0,$ но в точке $(0, 0)$ перегиба нет.

Достаточным условием перегиба для дважды дифференцируемой функции является условие сохранения знака второй производной $f^{\prime\prime}$ слева от $x_0,$ справа от $x_0$ и его изменения при переходе через точку $x_0.$

Теорема 5. Пусть функция $f$ определена на интервале $I$ и точка $x_0 \in I.$ Пусть, далее, существует $f^{\prime\prime}(x) (x \in I), f^{\prime\prime} (x_0) = 0$ и $f^{\prime\prime}(x) \leqslant 0$ при $x < x_0$ и $f^{\prime\prime}(x) \geqslant 0$ при $x > x_0.$ Тогда $(x_0, f (x_0))$ – точка перегиба, и при переходе через точку $x_0$ функция меняет характер выпуклости с выпуклости вверх на выпуклость вниз.

Эта теорема является следствием теоремы 3.

Примеры решения задач

Пример 1.
Найти интервалы, при которых кубическая функция $y = x^3$ выпукла вниз и выпукла вверх.

Решение

Построим график функции $y = x^3$ .

Найдем первую и вторые производные. $$f'(x) = ( x^3)’= 3x^2;$$ $$f^{\prime \prime}(x) = (3x^2)’ = 6x.$$ Очевидно, что в этом случае $f^{\prime \prime} < 0$ для $x<0$ и $f^{\prime \prime} > 0$ для $x>0.$ Поэтому на бесконечном интервале $( \infty; 0)$ функция строго выпукла вверх, на интервале $(0; + \infty)$ строго выпукла вниз.

[свернуть]

Пример 2.
Найти точки перегиба функции $f(x) = {e^{-x}}^2.$

Решение

Найдем первую производную. $$ f'(x) = -2x {e^{-x}}^2;$$Найдем вторую производную функции: $$f^{ \prime \prime} = -2{e^{-x}}^2 + 4x^4{e^{-x}}^2 = 4(x+ \frac{1}{\sqrt{2}})(x- \frac{1}{\sqrt{2}}){e^{-x}}^2.$$

Производная функции обращается в нуль в точках $x=- \frac{1}{\sqrt{2}}$ и $x=\frac{1}{\sqrt{2}}$ и при переходе через них меняется знак, значит эти точки являются точками перегиба.

[свернуть]

Пример 3. Найти точки перегиба функции $ f(x) = x^3- 3x^2+ x.$

Решение

Найдем первую производную функции: $$ f'(x) = (x^3- 3x^2+x)’ = 3x^2- 6x +1; $$ Найдем вторую производную функции: $$ f^{\prime\prime}(x) = (3x^2- 6x + 1)’ = 6x- 6; $$ Найдем нули второй производной: $$6x- 6 = 0  \Rightarrow 6x = 6 \Rightarrow x = 1$$ $x = 1$ — точка перегиба.

[свернуть]

Пример 4. Найти точки перегиба функции $f(x) = \arccos(x + 2).$

Решение

Найдем первую производную: $$ f'(x) = ( \arccos(x+2))’ =- \frac{1}{ \sqrt{1 — (x + 2)^2}};$$

Найдем вторую производную:

$$ f^{\prime\prime} (x) = \left(- \frac{1}{ \sqrt{1- (x + 2)^2)}}\right)’=$$
$$ = \frac{1}{2 \sqrt{(1 — ( x + 2)^2)^3}} (0- 2(x +2)(x + 2))’=$$

$$=-\frac{x+2}{\sqrt{(1-(x+2)^2)^3}} = 0. $$

Найдем значение второй производной в точке $x=0:$

$x =- 2$ — точка перегиба.

[свернуть]

Пример 5. Найти точки перегиба функции $ y = \frac{\ln(x)}{x}$.

Решение

Найдем первую производную:$$ y =\left( \frac{1}{x} \ln(x) \right)’ = \frac{(\ln(x))’x- \ln(x)(x)’}{x^2}=\frac{\frac{1}{x}x- \ln(x)1}{x^2}=$$

$$=\frac{\frac{1}{x}x \ln(x)}{x^2} =\frac{ \ln{x}- 1}{ \ln^2(x)}.$$

Найдем вторую производную:

$$f^(\prime\prime)(x)== \frac{ \frac{1}{x} \ln^2(x)-(\ln(x- 1)) \frac{2 \ln(x)}{x} }{ln^4(x)}=$$ $$= \frac{\ln(x)- 2 \ln(x)+2}{x ln^3{x}}=\frac{2 — \ln(x)}{x \ln^3(x)}=0.$$

$ x = e^2 \approx 7,4$ — точка перегиба.

[свернуть]

Литература

  1. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. стр.149-154;
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. стр. 365-378
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, стр. 294-303.
  4. З. М. Лысенко. Лекции по математическому анализу.

Выпуклые функции и точки перегиба

Этот тест проверит ваши знания касательно темы «Выпуклые функции и точки перегиба»