Изоморфизм линейных пространств

Пусть заданы два линейных пространства над полем [latex]\mathbb{P}[/latex]: [latex]A[/latex] и [latex]B[/latex]. Тогда изоморфизмом f (обозначается как [latex]A \cong B[/latex]) называется биекция из [latex]A[/latex] в [latex]B[/latex], удовлетворяющая следующим условиям:
1) [latex]f(a+b) = f(a) + f(b)[/latex]
2) [latex]f(\lambda\cdot a) = \lambda\cdot f(a) [/latex]

Изоморфными пространствами называются такие линейные пространства, между которыми можно установить изоморфизм.

Свойства изоморфизма:
1) [latex]f(0) = 0[/latex]
2)[latex]f(-a) = -f(a)[/latex]
3) [latex]f(\sum_{j=1}^{k}a_j a_j) = \sum_{j=1}^{k}a_j f(a_j)[/latex]
4) При изоморфном отображении линейно независимая система не может стать линейно зависимой. Обратное также верно.
5) Базис [latex]A[/latex] отображается в базис [latex]B[/latex].
6) Прямая сумма подпространств в [latex]A[/latex] отображается в прямую сумму образов этих подпространств в [latex]B[/latex].

 

По сути, изоморфизм является линейным оператором с нулевым дефектом и максимальным рангом.

 

Теорема. Любые два конечномерные линейные пространства, имеющие одинаковую размерность и заданные над одним и тем же полем, изоморфны.

Зададим два линейных пространства [latex]X[/latex] и [latex]Y[/latex] над полем P, [latex]\textrm{dim} X = \textrm{dim} Y[/latex]. Пусть базис [latex]X[/latex] — [latex]e_1,e_2,\dots ,e_n [/latex]; Y — [latex]e’_1,e’_2,\dots , e’_n[/latex]. Возьмём в пространстве [latex]X[/latex] векторы $$x_{1} = \alpha_1 e_1+\alpha_2 e_2+\dots+\alpha_n e_n$$ и $$x_2 = \beta_1 e_1+\beta e_2+\dots+\beta e_n $$Тогда при изоморфизме [latex]X \cong Y[/latex]
$$
f(x_1+x_2)=f((\alpha_1 + \beta_1)e_1 + (\alpha_2 + \beta_2)e_2 + \dots + (\alpha_n + \beta_n)e_n) = \\
= (\alpha_1 + \beta_1)e’_1 + (\alpha_2 + \beta_2)e’_2 + \dots + (\alpha_n + \beta_n)e’_n = \\
=(\alpha_1 e’_1 + \alpha_2 e’_2 + \dots + \alpha_n e’_n ) + (\beta_1 e’_1 + \beta_2 e’_2 + \dots + \beta_n e’_n) = f(x_1) + f(x_2).
$$
(первое условие изоморфизма) и
$$
f(\lambda x) = f((\lambda \alpha_1)e_1 + (\lambda \alpha_2)e_2 + \dots + (\lambda \alpha_n)e_n) = \\
= (\lambda \alpha_1)e’_1 + (\lambda \alpha_2)e’_2 + \dots + (\lambda \alpha_n)e’_n = \\
= \lambda(\alpha_1 e’_1 + \alpha_2 e’_2 + \dots + \alpha_n e’_n) = \lambda f(x)
$$
(второе условие).

Следствие. Все линейные пространства над одним и тем же полем [latex]\mathbb{P}[/latex] одинаковой размерности [latex]n[/latex] изоморфны [latex]n[/latex]-мерному арифметическому линейному пространству [latex]\mathbb{R}^n[/latex] над полем [latex]\mathbb{P}[/latex].

Примеры

1. Привести пример отображения из [latex]\mathbb{R}[/latex] в [latex]\mathbb{\mathbb{N}_0}[/latex], которое является изоморфизмом.
Решение

Пусть [latex]x’ = 2x[/latex]. Тогда [latex]f(a + b) = 2(a + b) = 2a + 2b = f(a) + f(b)[/latex] и [latex]f(\lambda a) = 2(\lambda a) = \lambda 2a = \lambda \cdot f(a)[/latex]. Значит, это отображение является изоморфизмом.

[свернуть]
2. Доказать первое свойство ([latex]f(0) = 0[/latex]).
Решение

[latex]f(a) = f(a + 0) = f(a) + f(0)[/latex], значит [latex]f(0) = 0[/latex].

[свернуть]

 

Смотрите также

Тест

Изоморфизм линейных пространств

Тест на знание изоморфизма линейных пространств.

Изоморфизм линейных пространств. Критерий изоморфности. Применение понятия изоморфизма к решению задач.

Спойлер

Изоморфизм линейных пространств, свойства

Дано два конечномерных линейных пространства [latex] (X_1, \mathbb{P})[/latex] и [latex] (X_2, \mathbb{P})[/latex], заданных над одним полем [latex] \mathbb{P}[/latex](любое числовое поле)
[latex] X_1 \simeq X_2[/latex] (изоморфны), если:

  1. [latex] \exists f: X_1 \to X_2[/latex] (т.е.[latex] \forall a\in X_1[/latex] сопоставляется вектор [latex] a`\in X`[/latex], образ вектора[latex] a[/latex], причём различные векторы из [latex] X[/latex] обладают различными образами и всякий вектор из [latex] X`[/latex] служит образом некоторого вектора из [latex] X[/latex]).
  2. [latex] f(\alpha a+\beta b) = \alpha f(a) + \beta f(b)[/latex], [latex] \forall a,b \in X_1[/latex], [latex] \forall \alpha, \beta \in P[/latex].

Свойства изоморфизма:

  1. [latex] f(0)= 0[/latex];
  2. [latex] f(-x)= f(x)[/latex];
  3. [latex] f(\sum\limits_{j=1}^k \alpha_je_j)= \sum\limits_{j=1}^k \alpha_j f(e_j)[/latex];
  4. ЛНЗ [latex] \to^f[/latex] ЛНЗ;
  5. ЛЗ [latex] \to^f[/latex] ЛЗ;
  6. Базис отображается в базис;
  7. dim [latex] X_1[/latex]= dim[latex] X_2[/latex];
  8. Прямая сумма [latex] \to[/latex] прямая сумма.

Критерий изоморфности:

[latex] X_1 \simeq X_2 \Leftrightarrow [/latex] dim [latex] X_1 = [/latex] dim [latex]X_2.[/latex]

[свернуть]

ПРИМЕР

Любой геометрический радиус-вектор плоскости, представим в виде:
[latex] x = ix_1 + jx_2[/latex]
svg111
При этом, если [latex] x = ix_1 + jx_2[/latex], [latex] y = iy_1 + jy_2[/latex], то
[latex] x + y = (x_1 + y_1)i +(x_2 + y_2)j[/latex] и [latex] \alpha x = (\alpha x_1)i + (\alpha x_2)j[/latex].
В результате устанавливаем взаимно однозначное соответствие [latex] x \Leftrightarrow (x_1, x_2)[/latex], соответствие между пространствами геометрических радиусов-векторов плоскости и двумерных арифметических векторов. Очевидно, оно будет изоморфизмом данных пространств, так как
если [latex] x \Leftrightarrow (x_1, x_2)[/latex], [latex] y \Leftrightarrow (y_1, y_2)[/latex], то [latex] x + y \Leftrightarrow (x_1 + y_1, x_2 + y_2)[/latex] и [latex] \alpha x \Leftrightarrow ( \alpha x_1, \alpha x_2 )[/latex].

Задача

Даны пространства [latex] A = \mathbb{R}[/latex] и [latex] B = \mathbb{R}[/latex]. Установить между ними соответствие, которое:

  1. будет являться изоморфизмом;
  2. не будет являться изоморфизмом.

Решение

  1. Первое, что мы делаем, это каждому числу [latex] a \in \mathbb{R}[/latex] ставим в соответсвие число [latex] b \in \mathbb{R}[/latex], придерживаясь правила: [latex] b= 2a[/latex]. Каждое [latex] b \in \mathbb{R}[/latex] будет отвечать единственному числу [latex] a= \frac{1}{2}b[/latex]. Отсюда следует, что утверждение [latex] b= 2a[/latex] устанавливает взаимно однозначное соответствие [latex] \mathbb{R} \Leftrightarrow \mathbb{R}[/latex]. Если [latex] a_1 \Leftrightarrow b_1[/latex] и [latex] a_2 \Leftrightarrow b_2[/latex], т.е. [latex] b_1 = 2a_1[/latex] и [latex] b_2= 2a_2[/latex] то [latex] (a_1+a_2) \Leftrightarrow (b_1+b_2)[/latex], так как [latex] b_1+b_2= 2a_1+2a_2 = 2(a_1+a_2)[/latex]. Если [latex] a \Leftrightarrow b[/latex], т.е. [latex] b= 2a[/latex], то [latex] \lambda a \Leftrightarrow \lambda b[/latex] для каждого действительного числа [latex] \lambda [/latex], так как [latex] \lambda b= \lambda 2a= 2 \lambda a[/latex]. Как результат, в данном соответствии [latex] b= 2a[/latex] сохраняются линейные операции, и оно является изоморфизмом.
  2. Следующее взаимно однозначное соответствие, которое будем рассматривать [latex] \mathbb{R} \Leftrightarrow \mathbb{R}[/latex], устанавливается формулой [latex] b= a^3[/latex] (число сопоставляемое числу [latex] a= \sqrt[3]{b}[/latex]). Данное соответствие не будет являться изоморфизмом, потому что будет сохранять линейные операции. Как пример, если [latex] a \Leftrightarrow b[/latex], т.е. [latex] b= a^3[/latex], то [latex]{(2a)}^3= 8a^3= 8b[/latex]. Значит, [latex] 2a \Leftrightarrow 8b[/latex], возникает противоречие условию [latex] \lambda a \Leftrightarrow \lambda b[/latex] для [latex] \lambda = 2[/latex] .

Задача

Проверить, являются ли изоморфными пространства:
[latex] X_1= \{ f(x) \in R[x] | f(x) \quad\vdots\quad (x^2+1) \}[/latex] и [latex] X_2[/latex], натянутое на систему векторов [latex] <a_1, a_2, a_3>. a_1=(0,0,1,0,1)[/latex], [latex] a_2=(0,1,0,1,0)[/latex] и [latex] a_3=(1,0,1,0,0)[/latex].

Решение

Найдем базис [latex] X_1[/latex]
[latex] \forall f(x) \in X_1 \Leftrightarrow f(x)= [/latex] [latex](x^2+1)(ax^2+bx+c)=[/latex] [latex]ax^4+bx^3+ax^2+cx^2+bx+c=[/latex] [latex]a(x^4+x^2)+b(x^3+x)+c(x^2+1)[/latex], таким образом [latex]<x^4+x^2,x^3+x,x^2+1>[/latex] — базис.
Очевидно, что система [latex] <a_1,a_2,a_3>[/latex], на которую натянуто [latex] X_2[/latex] ЛНЗ (линейно независимая система), dim [latex] X_1 =[/latex] dim [latex] X_2= 3[/latex]. Следовательно по критерию изоморфности [latex] X_1 \simeq X_2[/latex].

Источники

  1. Белозеров Г.С. Конспект лекций
  2. Проскуряков И.В. Сборник задач по линейной алгебре. Издание пятое, 1974.Стр. 170

Изоморфизм линейных пространств

Тест по теме: «Изоморфизм линейных пространств. Критерий изоморфности»