15.3.1 Признак Лейбница

Определение. Числовой ряд $\sum\limits_{n=1}^\infty a_{n}$ называется знакопеременным (знакочередующимся), если его слагаемые попеременно меняют знак, т. е. если $a_{n} \cdot a_{n+1}<0$ $(n=1,2,\dots)$.
Знакопеременный ряд можно записать в виде $$u_{1}-u_{2}+u_{3}-u_{4}+\dots=\sum \limits _{n=1}^\infty (-1)^{n-1}u_{n},$$ где $u_{n}\geqslant 0$.

Теорема Лейбница. Если модули слагаемых знакочередующегося ряда $$\sum\limits_{n=1}^\infty (-1)^{n-1}u_{n} (15.14)$$ монотонно убывают к нулю, то этот ряд сходится.

Обозначим через $S_{n}$ частичную сумму ряда $(15.14)$. Рассмотрим частичные суммы с четными номерами $$S_{2m}=(u_{1}-u_{2})+(u_{3}-u_{4})+\dots+(u_{2m-1}-u_{2m}).$$ Так как $u_{n}$ убывают по условию, то в каждой скобке выражение неотрицательно. Поэтому $$S_{2(m+1)}=S_{2m+2}=S_{2m}+(u_{2m+1}-u_{2m+2})\geqslant S_{2m}.$$ Это означает, что последовательность $\left\{ {S_{2m}} \right\}_{m=1}^\infty$ возрастает. С другой стороны, из представления $$S_{2m}=u_{1}-(u_{2}-u_{3})-(u_{4}-u_{5})-\dots-(u_{2m-2}-u_{2m-1})-u_{2m},$$ в силу монотонности $ u_{k}$, следует, что $S_{2m}\leqslant u_{1}$. Таким образом, последовательность $\left\{ {S_{2m}} \right\}_{m=1}^\infty$ ограничена сверху и возрастает и, следовательно, имеет предел. Обозначим $S= \displaystyle{\lim_{m \to \infty}} S_{2m}$. Для доказательства сходимости ряда $(15.14)$ нужно еще показать, что $S_{2m+1} \rightarrow S (m\rightarrow \infty)$. Но это сразу следует из равенства $S_{2m+1}= S_{2m}+ u_{2m+1}$ и условия теоремы $u_{2m+1}\rightarrow 0 (m\rightarrow\infty)$. Окончательно, последовательность частичных сумм ряда $(15.14)$ с четными и с нечетными номерами сходятся к одному и тому же пределу $S$. Поэтому $S= \displaystyle{\lim_{n \to \infty}} S_{n}$.
Знакочередующийся ряд, для которого выполнены условия теоремы Лейбница, называется рядом лейбницевского типа. Теорема Лейбница утверждает, что ряд лейбницевского типа сходится.

Пример 1. Рассмотрим полугармонический ряд $\displaystyle{\sum_{n=1}^\infty} \frac{(-1)^{n-1}}{n}$. Здесь $u_{n}=\frac{1}{n}$ и данный ряд является рядом лейбницевского типа. По теореме Лейбница, он сходится. Ранее мы показали, что ряд, составленный из модулей слагаемых, – гармонический – расходится. Таким образом, сходимость исходного ряда обусловлена не малостью его слагаемых, а взаимной интерференцией слагаемых.

Пример 2. Приведем пример, показывающий, что в теореме Лейбница нельзя отбросить условие монотонности.
Ряд $\displaystyle{\sum_{n=1}^\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ является рядом лейбницевского типа и, следовательно, сходится. Гармонический ряд $\displaystyle{\sum_{n=1}^\infty} \frac{1}{n}$ расходится. Рассмотрим знакопеременный ряд $\displaystyle{\sum_{n=1}^\infty}\left[ \frac{(-1)^{n-1}}{\sqrt{n}} +\frac{1}{n}\right].$ Его слагаемые стремятся к нулю, но их модули не монотонны. Легко видеть, что он расходится. Действительно, если бы он являлся сходящимся, то сходился бы и ряд $\displaystyle{\sum_{n=1}^\infty} \frac{1}{n}$, как разность двух сходящихся рядов $\displaystyle{\sum_{n=1}^\infty}\left[ \frac{(-1)^{n-1}}{\sqrt{n}} +\frac{1}{n}\right]$ и $\displaystyle{\sum_{n=1}^\infty} \frac{(-1)^{n-1}}{\sqrt{n}}.$ Но гармонический ряд $\displaystyle{\sum_{n=1}^\infty} \frac{1}{n}$ расходится.

Теорема (оценка остатка ряда лейбницевского типа). Остаток после $n$-го слагаемого ряда лейбницевского типа имеет такой же знак, как и его первое слагаемое, а по абсолютной величине не превосходит абсолютной величины первого слагаемого.

Пусть $S_{n}$– частичные суммы ряда лейбницевского типа $$\displaystyle{\sum_{n=1}^\infty} (-1)^{n-1}u_{n} (15.15)$$ $S= \displaystyle{\sum_{n=1}^\infty} (-1)^{n-1}u_{n}$ и $r_{n}=\displaystyle{\sum_{k=n+1}^\infty} (-1)^{k-1}u_{k}$ Тогда $r_{n}=S-S_{n}$, и мы хотим оценить $r_{n}.$
При доказательстве теоремы Лейбница мы получили, что последовательность частичных сумм ряда $(15.15)$ с четными номерами $S_{2m}$ возрастает, и поэтому $S_{2m}\leqslant S$. С другой стороны, $$S_{2m+1}=u_{1}-(u_{2}-u_{3})-(u_{4}-u_{5})-\dots-(u_{2m}-u_{2m+1}),$$ откуда видно, что $S_{2m+1}\geqslant S_{2m+3},$ т.е. последовательность частичных сумм ряда $(15.15)$ с нечетными номерами убывает и поэтому $S_{2m+1}\geqslant S$.
Таким образом, $$S_{2m}\leqslant S \leqslant S_{2m+1},$$ откуда $$0\leqslant S-S_{2m}\leqslant S_{2m+1}-S_{2m}=u_{2m+1},$$ т.е. остаток четного порядка $r_{2m}=S-S_{2m}$ удовлетворяет неравенству $$0\leqslant r_{2m} \leqslant u_{2m+1},$$ что и доказывает теорему для остатков четного порядка.
Аналогично, из неравенства $$S_{2m+2}\leq S \leqslant S_{2m+1}$$ следует $$0\geqslant S — S_{2m+1}\geqslant S_{2m+2}-S_{2m+1}=-u_{2m+2},$$ т. е. $$-u_{2m+2}\leqslant r_{2m+1}\leqslant 0,$$ чем доказано утверждение теоремы для остатков нечетного порядка.
Итак, мы показали, что $\text{sign }$ $r_{n} = (-1)^{n}$ и $\mid r_{n}\mid \leqslant u_{n+1}$ для любого $n = 1,2,\dots$

Примеры решения задач

Определить, сходятся ли ряды:

  1. $\displaystyle \sum_{n=1}^\infty (-1)^n \frac{\ln^2n}{n}$
    Решение

    Найдём предел $u_{n}=\frac{\ln^2n}{n}$ при $n\rightarrow\infty$, воспользовавшись правилом Лопиталя: $\displaystyle\lim_{n \to \infty}\frac{\ln^2n}{n}=\displaystyle\lim_{n \to \infty}\frac{2\ln n}{n}=\displaystyle\lim_{n \to \infty}\frac{2}{n}=0$, то есть модули слагаемых стремятся к нулю. Для проверки монотонности воспользуемся теоремой о достаточном условии строгой монотонности:
    $\left(\frac{\ln^2x}{x}\right)^\prime=\frac{\frac{2\ln x}{x}x-\ln^2 x}{x^2}=\frac{\ln x \left(2-\ln x \right)}{x^2}$ Откуда видно, что при $x\rightarrow\infty$, $\left(\frac{\ln^2x}{x}\right)^\prime<0$, откуда следует, что модули слагаемых монотонно убывают. То есть, данный ряд удовлетворяет условиям теоремы Лейбница, следовательно, он сходится.

  2. $\displaystyle{\sum_{n=1}^\infty} \frac{(-1)^{n+1}}{{\sqrt[n]{n}}}$
    Решение

    Найдём предел $u_{n}=\frac{(-1)^{n+1}}{{\sqrt[n]{n}}}$ при $n\rightarrow\infty$: $\displaystyle \lim_{n \to \infty} \frac{(-1)^{n+1}}{{\sqrt[n]{n}}}=\lim_{n \to \infty}n^{-\frac{1}{n}}=\lim_{n \to \infty}e^{-\frac{\ln n}{n}}. $Воспользуемся правилом Лопиталя: $\displaystyle \lim_{n \to \infty}e^{-\frac{\ln n}{n}}=\lim_{n \to \infty}e^{-\frac{1}{n}}=e^0=1$. Покажем, что данный ряд не удовлетворяет не только условиям теоремы Лейбница, но и необходимое условие сходимости числового ряда: $\displaystyle \lim_{n \to \infty} \frac{(-1)^{n+1}}{{\sqrt[n]{n}}}=\displaystyle \lim_{n \to \infty} (-1)^{n+1}$ Но предела $\displaystyle \lim_{n \to \infty} (-1)^{n+1}$ не существует (можно показать по Гейне, взяв ${x_{k}}^{\prime}=2n+1$ и ${x_{k}}^{\prime \prime}=2n$). То есть, данный ряд расходится.

  3. $\displaystyle \sum_{n=1}^\infty \frac{(-1)^{n+1}}{2n-\text{arctg } n}$
    Решение

    Найдём предел $\displaystyle \lim_{n \to \infty} \frac{1}{2n-\text{arctg } n}=\lim_{n \to \infty} \frac{1}{2n-\frac{\pi}{2}}=0.$ То есть модули слагаемых стремятся к нулю. Проверяем монотонность: $\displaystyle \left(\frac{1}{2x-\text{arctg } x}\right)^\prime=\frac{-2+\frac{1}{1+x^2}}{\left(2x-\text{arctg } x\right)^2},$ откуда видно, что при $x\rightarrow\infty$ $\displaystyle \left(\frac{1}{2x-\text{arctg } x}\right)^\prime < 0$, что по теореме о достаточном условии строгой монотонности говорит о том, что $\displaystyle \left\{\frac{1}{2n-\text{arctg } n}\right\}_{n=1}^\infty$ монотонно убывает. То есть, по теореме Лейбница, ряд сходится.

  4. $\displaystyle \sum_{n=1}^\infty \sin{\left(\pi\sqrt{n^2+k^2}\right)},$ где $k \in \mathbb{N}$
    Решение

    Воспользовавшись нечётностью и периодичностью синуса, получим, что $\sin\alpha=-\sin(-\alpha)=-\sin\left(2\pi n-\alpha\right)=-\sin\left(\pi n+(\pi n -\alpha\right))=$$=-\sin(\pi n)\cos(\pi n-\alpha)-\cos(\pi n)\sin(\pi n-\alpha)=$$=-\cos(\pi n)\sin(\pi n-\alpha)=(-1)^{n+1}\sin(\pi n-\alpha)$. То есть, $$\displaystyle \sum_{n=1}^\infty \sin{\pi\sqrt{n^2+k^2}}=\displaystyle \sum_{n=1}^\infty (-1)^{n+1}\sin(\pi n-\pi\sqrt{n^2+k^2}).$$ Предел общего члена ряда: $\displaystyle \lim_{n \to \infty} (-1)^{n+1}\sin(\pi n-\pi\sqrt{n^2+k^2})=\lim_{n \to \infty}\sin\left(\frac{n^2-(n^2+k^2)}{n+\sqrt{n^2+k^2}}\right)=$$\displaystyle =\lim_{n \to \infty}\sin\left(\frac{\pi k^2}{n+\sqrt{n^2+k^2}}\right)=0.$ Монотонность. $\left(\frac{\pi k^2}{x+\sqrt{x^2+k^2}}\right)^\prime=\frac{-\pi k^2}{x+\sqrt{x^2+k^2}}\left(1+\frac{x}{\sqrt{x^2+k^2}}\right)=$$=\frac{-\pi k^2}{x+\sqrt{x^2+k^2}}\left(\frac{x+\sqrt{x^2+k^2}}{\sqrt{x^2+k^2}}\right)=\frac{-\pi k^2}{x\sqrt{x^2+k^2}+x^2+k^2}$, то есть при $n \to \infty$ $\left(\frac{\pi k^2}{x+\sqrt{x^2+k^2}}\right)^\prime<0$, а значит, по теореме о достаточном условии строгой монотонности $\left\{\frac{\pi k^2}{n+\sqrt{n^2+k^2}}\right\}_{n=1}^\infty$ монотонно убывает при достаточно больших $n.$ При $y$ в окрестности нуля, по таблице эквивалентных, $\sin(y)\sim y$, а $y=\frac{\pi k^2}{x+\sqrt{x^2+k^2}}$ монотонно убывает к $0$, как было показано. Значит, общий член ряда также монотонно убывает к нулю, следовательно, по признаку Лейбница, ряд сходится.

    При первом взгляде могло показаться, что для этого ряда не выполняется необходимое условие сходимости числового ряда. Однако, это не так: $\displaystyle \lim_{n \to \infty}\sin{\left(\pi\sqrt{n^2+k^2}\right)}=\lim_{n \to \infty}\sin{\left(\pi\sqrt{n^2\left(1+\frac{k^2}{n^2}\right)}\right)}=$$\displaystyle =\lim_{n \to \infty}\sin{\pi n\sqrt{1+\frac{k^2}{n^2}}}=\lim_{n \to \infty}\sin{\pi n}=0$

Признак Лейбница

Тест для проверки уровня усвоения материала по теме «признак Лейбница».

  1. Лысенко З.М. Конспект лекций по математическому анализу.
  2. В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу т.2. Одесса, «Астропринт», 2010, стр 16-19
  3. Б.П.Демидович. Сборник задач и упражнений по математическому анализу, 13-ое издание, Московского университета, 1997, стр. 259-260

Смотрите также

  1. Л.Д.Кудрявцев. Курс математического анализа, том. 2 стр. 27-29
  2. Г.М. Фихтенгольц. Курс дифференциального и интегрального исчисления.- т.2., стр. 302-305

15.3.2 Признаки Абеля и Дирихле

Аналогом интегрирования по частям для сумм является следующее равенство, которое называют преобразованием Абеля:
$$ \sum_{i=1}^n\alpha_i \beta_i = \sum_{i=1}^{n-1}\left(\alpha_i — \alpha_{i+1}\right)B_i + \alpha_n B_n,$$
где $ B_i = \sum_{j = 1}^i\beta_j \left(i = 1,2,\ldots,n\right).$ Для его доказательства обозначим
$ B_0 = 0.$ Тогда получим
$$ \sum_{i=1}^n\alpha_i \beta_i = \sum_{i=1}^n\alpha_i\left(B_i — B_{i-1}\right) = \sum_{i=1}^n\alpha_iB_i — \sum_{i=1}^n\alpha_iB_{i-1} = $$ $$ = \sum_{i=1}^{n — 1}\alpha_iB_i + \alpha_nB_n — \sum_{i=1}^{n — 1}\alpha_{i + 1}B_i = \sum_{i=1}^{n — 1}\left(\alpha_i — \alpha_{i+1}\right)B_i + \alpha_nB_n,$$
и тем самым завершается доказательство преобразования Абеля.

Лемма

Пусть числа $ \alpha_i \left(i = 1,2,\ldots,n\right)$ монотонны (возрастают или убывают). Тогда справедливо неравенство
$$ \left|\sum_{i=1}^n\alpha_i \beta_i\right| \leqslant \max_{1\leqslant k\leqslant n} \left| B_k\right|\left(\left|\alpha_1\right| + 2\left|\alpha_n\right|\right)$$

Применим преобразование Абеля
$$ \left|\sum_{i=1}^n\alpha_i \beta_i\right| = \left|\sum_{i=1}^{n — 1}\left(\alpha_i — \alpha_{i+1}\right)B_i + \alpha_nB_n\right| \leqslant$$
$$ \leqslant \max_{1\leqslant k\leqslant n}\left| B_k\right|\left(\sum_{i=1}^{n — 1}\left|\alpha_i — \alpha_{i+1}\right| + \left|\alpha_n\right|\right) = $$
$$ = \max_{1\leqslant k\leqslant n}\left| B_k\right|\left(\left|\alpha_1 — \alpha_n\right| + \left|\alpha_n\right|\right)\leqslant \max_{1\leqslant k\leqslant n}\left| B_k\right|\left(\left|\alpha_1\right| + 2\left|\alpha_n\right|\right),$$
и тем самым лемма доказана.

Теорема (признак Абеля)

Пусть последовательность $ \{a_n\}$ монотонна (возрастающая или убывающая) и ограничена, а последовательность $ \{b_n\}$ такова, что сходится ряд $ \sum_{n = 1}^{\infty}b_n.$ Тогда ряд $ \sum_{n = 1}^{\infty}a_nb_n$ сходится.

Доказательство основано на применении критерия Коши . В силу этого критерия, нам нужно оценить отрезок Коши
$$ \sum_{k=n + 1}^{n + p}a_k b_k \equiv \sum_{i=1}^pa_{n + i}b_{n + i}$$
Обозначим $ \alpha_i = a_{n+i},\; \beta_i = b_{n+i}.$ Пользуясь леммой, получим
$$ \left|\sum_{k=n + 1}^{n + p}a_k b_k\right| = \left|\sum_{i=1}^p\alpha_i\beta_i\right| \leqslant \max_{1\leqslant k\leqslant p}\left| B_k\right|\left(\left|\alpha_1\right| + 2\left|\alpha_p\right|\right) = $$
$$ = \max_{1\leqslant k\leqslant p}\left|\sum_{i=n+1}^{n+k}b_i\right|\left(\left|a_{n+1}\right| + 2\left|a_{n+p}\right|\right)\;\;\;\;\;\;\left(15.16\right)$$
По условию, ряд $ \sum_{n=1}^{\infty}b_n$ сходится. Поэтому, в силу критерия Коши, для любого $ \varepsilon > 0$ найдется такой номер $ N,$ что при любом $ n \geqslant N$ и при любом $ k \in \mathbb{N}$ справедливо неравенство $ \left|\sum_{i=n+1}^{n+k}b_i\right| < \varepsilon .$ Далее, в силу
ограниченности последовательности $ \{a_n\},$ найдется такое $ M,$ что $ \left|a_n\right| \leq M \left(n = 1,2,\ldots\right).$ Из неравенства $ \left(15.16\right),$ для заданного $ \varepsilon > 0$ и $ n \geqslant N$ имеем
$$ \left|\sum_{i=n+1}^{n+p}a_ib_i\right| \leqslant 3M \cdot \varepsilon,$$
где произвольное $ p \in \mathbb{N}.$ Таким образом, для ряда $ \sum_{i = 1}^{\infty}a_ib_i$ выполнено условие критерия Коши, в силу которого этот ряд сходится.

Теорема (признак Дирихле)

Пусть последовательность $ \{a_n\}$ монотонно стремится к нулю, а последовательность $ \{b_n\}$ такова, что частичные суммы $ B_n = \sum_{i = 1}^{n}b_i$ ограничены, т.е существует такое $ M,$ что $ \left|B_n\right| \leq M \left(n = 1,2,\ldots\right).$ Тогда ряд $ \sum_{n = 1}^{\infty}a_nb_n$ сходится.

В силу неравенства $ \left(15.16\right),$ полученного при доказательстве предыдущей теоремы,
$$ \left|\sum_{k=n+1}^{n+p}a_kb_k\right| \leqslant \max_{1\leqslant k\leqslant p}\left| B_{n+k} — B_n\right|\left(\left|a_{n+1}\right| + 2\left|a_{n+p}\right|\right)\;\;\;\;\;\left(15.17\right)$$
Зададим $ \varepsilon > 0$ и, пользуясь условиями теоремы, найдем такой номер $ N,$ что $ \left|a_n\right| < \varepsilon$ при всех $ n \geqslant N.$ Тогда из $ \left(15.17\right)$ и из ограниченности $ B_i$ следует
$$ \left|\sum_{k=n+1}^{n+p}a_kb_k\right| \leqslant 2M \cdot 3\varepsilon = 6M\varepsilon\;\;\left(n \geqslant N, p \in \mathbb{N}\right)$$
Таким образом, для ряда $ \sum_{n=1}^{\infty}a_nb_n$ выполнено условие критерия Коши, в силу которого этот ряд сходится.

Замечание. Теорема Лейбница является частным случаем признака Дирихле, в котором $ a_n = u_n, b_n = \left(-1\right)^{n-1}.$

Примеры:

Пример 1.
Доказать, что ряд $ \sum\limits_{n = 1}^{\infty} \frac{1}{n}\sin{n\alpha}$ сходится по Дирихле.

Решение:
Положим $ a_n = \frac{1}{n},$ тогда последовательность $ \{a_n\}_{n = 1}^{\infty}$ монотонно стремится к нулю т.к.

  1. $ \lim\limits_{n \rightarrow \infty}\frac{1}{n} = 0$
  2. $ \frac{a_{n + 1}}{a_n} = \frac{n}{n + 1} < 1$

Положим также $ b_n = \sin{n\alpha},$ тогда по формуле суммы синусов кратных углов получим
$$ \sum_{k=1}^{n}\sin{n\alpha} = \frac{\sin{\frac{n\alpha}{2}} \cdot \sin{\frac{\left(n+1\right)\alpha}{2}}}{\sin{\frac{\alpha}{2}}}, \;\; \alpha \neq 2\pi m, \;\; \left(m = 0,\pm 1,\ldots\right)$$
и отсюда
$$ \left|\sum_{k=1}^{n}\sin{n\alpha}\right| = \left|\frac{\sin{\frac{n\alpha}{2}} \cdot \sin{\frac{\left(n+1\right)\alpha}{2}}}{\sin{\frac{\alpha}{2}}}\right| \leqslant \frac{1}{\left|\sin{\frac{\alpha}{2}}\right|} \equiv M, \;\; \alpha \neq 2\pi m, \;\; \left(m = 0,\pm 1,\ldots\right),$$
что и значит что наши суммы ограничены константой $ M$. Подытожив, имеем последовательность $ \{a_n\}_{n = 1}^{\infty},$ монотонно сходящуюся к $ 0$ и последовательность $ \{b_n\}_{n = 1}^{\infty},$ частичные суммы которой ограниченны. Тогда по признаку Дирихле ряд $ \sum_{n=1}^{\infty} \frac{1}{n}\sin{n\alpha}$ сходится.

Пример 2.
Исследовать ряд $ \sum\limits_{n = 1}^{\infty} \frac{\sin n \cdot \sin{n^2}}{n^2}$ на сходимость.

Решение:
Пусть $ \{b_n\}_{n=1}^{\infty} = \{\sin n \cdot \sin{n^2}\}_{n=1}^{\infty},$ покажем, что частичные суммы ограниченны.
$$ \sum_{k = 1}^{n}b_k = \sum_{k = 1}^{n}\sin k \cdot \sin{k^2} = \sum_{k = 1}^{n}\frac{\cos{\left(k — k^2\right)} — \cos{\left(k + k^2\right)}}{2} = \left(\frac{\cos0}{2} — \frac{\cos2}{2}\right) + $$
$$ + \left(\frac{\cos{\left(-2\right)}}{2} — \frac{\cos6}{2}\right) + \left(\frac{\cos{\left(-6\right)}}{2} — \frac{\cos12} {2}\right) +
\left(\frac{\cos{\left(-12\right)}}{2} — \frac{\cos20}{2}\right) +\cdots $$
$$ + \left(\frac{\cos{\left(n — n^2\right)}}{2} — \frac{\cos{\left(n + n^2\right)}}{2}\right) = \frac{1}{2} — \frac{\cos{\left(n + n^2\right)}}{2}$$
$$ \left|\sum_{k = 1}^{n}b_k\right| = \left|\frac{1}{2} — \frac{\cos{\left(n + n^2\right)}}{2}\right| \leqslant \frac{1}{2} + \frac{\left|\cos{\left(n + n^2\right)}\right|}{2} \leqslant \frac{1}{2} + \frac{1}{2} = 1$$
Получили, что частичные суммы последовательности $ \{b_n\}_{n=1}^{\infty}$ в совокупности ограниченны единицей.
Теперь пусть $ \{a_n\}_{n=1}^{\infty} = \{n^2\}_{n=1}^{\infty}.$ Убедимся, что $ \{a_n\}_{n=1}^{\infty}$ монотонно стремится к нулю.

  1. $ \lim\limits_{n \rightarrow \infty}\frac{1}{n^2} = 0$
  2. $ \frac{a_{n + 1}}{a_n} = \frac{n^2}{\left(n + 1\right)^2} < 1$

Действительно, $ \{a_n\}_{n=1}^{\infty}$ монотонно стремится к нулю.
Значит ряд $ \sum\limits_{n = 1}^{\infty} \frac{\sin n \cdot \sin{n^2}}{n^2}$ сходится по Дирихле.

Пример 3.
Доказать, что ряд $ \sum\limits_{n = 1}^{\infty} \frac{\sin{\frac{\pi n}{12}}}{\ln n}\cos{\frac{\pi}{n}}$ сходится по Абелю.

Решение:
Выделим в исходном ряде 2 последовательности: $ \{\frac{\sin{\frac{\pi n}{12}}}{\ln n}\}_{n=1}^{\infty}$ и $ \{\cos{\frac{\pi}{n}}\}_{n=1}^{\infty}.$ Докажем, что ряд $ \sum\limits_{n = 1}^{\infty}\frac{\sin{\frac{\pi n}{12}}}{\ln n}$ сходится:
Пусть $ a_n = \frac{1}{\ln n},$ тогда последовательность $ \{a_n\}_{n = 1}^{\infty}$ монотонно стремится к нулю т.к.

  1. $ \lim\limits_{n \rightarrow \infty}\frac{1}{ln n} = 0$
  2. $ \frac{a_{n + 1}}{a_n} = \frac{\ln n}{\ln{n + 1}} < 1$

И пусть $ b_n = \sin{\frac{\pi n}{12}},$ отсюда из формулы суммы синусов кратных углов следует, что
$$ \left|\sum_{k=1}^{n}\sin{\frac{\pi n}{12}}\right| = \left|\frac{\sin{\frac{\pi}{24} n} \cdot \sin{\left(\frac{\pi}{24}\left(n+1\right)\right)}}{\sin{\frac{\pi}{24}}}\right| \leqslant \frac{1}{\left|\sin{\frac{\pi}{24}}\right|} \equiv M,$$
значит частичные суммы последовательности $ \{b_n\}_{n=1}^{\infty}$ ограничены. По признаку Дирихле ряд сходится.
Последовательность $ \{\cos{\frac{\pi}{n}}\}_{n=1}^{\infty}$ ограниченна единицей и монотонна т.к. косинус на промежутке $ \left[\pi;0\right)$ монотонно убывает.

Оба условия признака Абеля выполнены, а значит ряд сходится.

Тест по теме: "Признаки Абеля и Дирихле"

Небольшой тест, чтобы закрепить теоретический материал.

Равномерная сходимость и интегрирование

Пусть [latex]f_{n}[/latex] — последовательность интегрируемых на отрезке [latex]\left[a;b\right][/latex] функций, поточечно сходящаяся к функции [latex]f[/latex]. Поставим вопрос об интегрируемости на отрезке [latex]\left[a;b\right][/latex] предельной функции [latex]f[/latex] и справедливости равенства
$$ \lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx $$
Следующие примеры показывают, что в общем случае и интегрируемости нет, и равенство не выполняется.

Пример 1

Пусть [latex]\left \{ r_{n} \right \}_{n=1}^{\infty }[/latex] — последовательность всех рациональных точек из отрезка [latex]\left[0;1\right][/latex]. Выразим:
$$f_{n}(x)=\left\{\begin{matrix}1,&x\in \left \{ r_{1},\cdots ,r_{n} \right \},\\ 0,& x\in \left[0;1\right]\setminus \left \{ r_{1},\cdots ,r_{n} \right \}\end{matrix}\right.$$
Тогда каждая функция [latex]f_{n}[/latex] интегрируема на отрезке [latex]\left[0;1\right][/latex], потому что она имеет лишь конечное число точек разрыва [latex]\left \{ r_{1},\cdots r_{n}\right \}[/latex]. С другой стороны, видно, что $$\lim_{n\rightarrow \infty }f_{n}(x)=D(x)$$ где D — функция Дирихле. Но как известно, функция Дирихле не интегрируема на отрезке [latex]\left[0;1\right][/latex].
Вывод: мы построили последовательность интегрируемых функций, сходящуюся к неинтегрируемой функции.

Замечание (для рядов)

Спойлер

Из примера 1 легко получить пример, который показывает, что сумма функционального ряда, слагаемые которого интегрируемы, не обязана быть интегрируемой.
Действительно, положим [latex]u_{n}(x)=f_{n}(x)-f_{n-1}(x)[/latex], [latex]u_{1}(x)=f_{1}(x)[/latex], [latex]u_{2}(x)=f_{2}(x)-f_{1}(x)[/latex].
Частичные суммы ряда [latex]s_{n}(x)=f_{n}(x)[/latex]. И [latex]\sum_{n=1}^{\infty }u_{n}(x)dx=f(x)[/latex].

[свернуть]

Пример 2

Положим [latex]f_{n}(0)=f_{n}(\frac{1}{n})=f_{n}(1)=0, f_{n}(\frac{1}{2n})=n[/latex], а на отрезках [latex]\left[0;\frac{1}{2n}\right], \left[\frac{1}{2n};\frac{1}{n}\right], \left[\frac{1}{n};1\right][/latex] функция [latex]f_{n}[/latex] — линейна. Мы видим, что [latex]\lim_{n\rightarrow \infty }f_{n}(x)=0,\; \forall x\in \left[0;1\right][/latex], так что предельная функция [latex]f(x)\equiv 0\; (x\in \left[0;1\right])[/latex] интегрируема и [latex]\int_{0}^{1}f(x)dx=0[/latex]. С другой стороны, очевидно, что [latex]\int_{0}^{1}f_{n}(x)dx=\frac{1}{2}[/latex], поэтому предельный переход под знаком интеграла недопустим.
Вывод: даже если предельная функция интегрируема, то предел интегралов не обязан равняться интегралу от предельной функции.

Замечание (для рядов)

Спойлер

Пример 2 позволяет построить ряд из интегрируемых функций такой, что предельная функция интегрирума, но равенство не выполняется.

[свернуть]

Вывод (для рядов)

Воспользовавшись этими примерами мы показали, что нельзя почленно интегрировать сходящийся ряд, т.е. равенство $$\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx=\sum_{n=1}^{\infty }\int\limits_{a}^{b}u_{n}(x)dx$$
не верно. Потому что сумма поточечно сходящегося ряда из интегрируемых функций может оказаться неинтегрируемой функцией, а если даже сумма ряда будет функцией интегрируемой, то нужное равенство все равно нельзя гарантировать.

Теорема (об интегрировании равномерно сходящейся последовательности)

Пусть последовательность [latex] \left \{ f_{n}(x) \right \}[/latex] из непрерывных на отрезке [latex]\left[a;b\right ][/latex] функций, равномерно сходится к [latex]f(x)[/latex] на этом отрезке. Тогда существует $$ \lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx $$

Доказательство

Спойлер

По теореме о непрерывности предела равномерно сходящейся последовательности непрерывных функций: f(x) – непрерывна на [a, b], а значит и интегрируема на этом отрезке. Воспользуемся определением равномерной сходимости: [latex]\forall \varepsilon > 0 \; \exists N \; \forall n\geq N[/latex] и [latex]\forall x\in \left [ a, b \right ][/latex] справедливо неравенство [latex]\left | f_{n}(x)-f(x) \right |< \frac{\varepsilon }{b-a}[/latex]. Проинтегрировав это неравенство, получаем, что при всех [latex]n\geq N : \left | \int_{a}^{b}f_{n}(x)dx — \int_{a}^{b}f(x)dx \right |\leq \int_{a}^{b}\left | f_{n}(x)-f(x) \right |dx< \frac{\varepsilon }{b-a}\left ( b-a \right )=\varepsilon [/latex]
Теорема доказана.

[свернуть]

Следствие (об интегрировании равномерно сходящегося ряда)

Пусть [latex]\left \{ u_{n} \right \}[/latex] — последовательность непрерывных на отрезке [latex]\left[a;b\right][/latex] функций такова, что ряд [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex] сходится равномерно на [latex]\left[a;b\right][/latex]. Тогда справедливо равенство $$\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx=\sum_{n=1}^{\infty }\int\limits_{a}^{b}u_{n}(x)dx$$

Доказательство

Спойлер

Действительно, функции [latex]f_{n}(x)=\sum_{k=1}^{n}u_{k}(x)[/latex] непрерывны как суммы конечного числа непрерывных функций [latex]u_{k}[/latex], и последовательность [latex]\left \{ f_{n} \right \}[/latex] сходится к функции [latex]f(x)=\sum_{n=1}^{\infty }u_{n}(x)[/latex] равномерно на [latex]\left[a;b\right][/latex]. Тогда, по предыдущей теореме, $$\sum_{k=1}^{n}\int\limits_{a}^{b}u_{k}(x)dx=\int\limits_{a}^{b}\sum_{k=1}^{n}u_{k}(x)dx=\int\limits_{a}^{b}f_{n}(x)dx\rightarrow \int\limits_{a}^{b}f(x)dx=\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx.$$

[свернуть]
Следующая теорема является обобщением всех теорем об интегрировании равномерно сходящейся последовательности.

Теорема

Пусть [latex]\left\{f_{n}\right\}[/latex] — последовательность интегрируемых на отрезке [latex]\left[a;b\right][/latex] функций, равномерно сходящаяся на этом отрезке к функции [latex]f[/latex]. Тогда предельная функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex] и справедливо равенство $$\lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx$$

Доказательство

Спойлер

Оно проводится также, как в предыдущей теореме, при условии, что [latex]\int_{a}^{b}f(x)dx[/latex] существует. Поэтому достаточно доказать лишь интегрируемость на [latex]\left[a;b\right][/latex] функции [latex]f[/latex]. Для этого воспользуемся критерием интегрируемости в терминах колебаний, согласно которому функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex] тогда и только тогда, когда [latex]\forall \varepsilon > 0 \; \exists \delta > 0, \forall \prod[/latex] — разбиения отрезка [latex]\left[a;b\right][/latex], диаметр которого [latex]d\left ( \prod \right )< \delta [/latex], справедливо неравенство $$\sum_{i=0}^{s-1}\omega _{i}(f)\Delta x_{i}< \varepsilon$$ где [latex]\omega _{i}(f)[/latex] — колебания функции [latex]f[/latex] частичных отрезках [latex]\left[x_{i};x_{i+1}\right][/latex]. Зададим [latex]\varepsilon > 0[/latex] и, пользуясь равномерной сходимостью последовательности [latex]\left \{ f_{n} \right \}[/latex], найдем такое N, что [latex]\forall n\geq N,\; \forall x\in \left [ a;b \right ][/latex] справедливо неравенство [latex]\left | f_{n}(x)-f(x) \right |< \varepsilon [/latex]. Если [latex]\forall n\geq N[/latex], то $$\left | f(x’)-f(x») \right |\leq \left | f(x’)-f_{n}(x») \right |+\left | f_{n}(x’)-f_{n}(x») \right |+\left | f_{n}(x»)-f(x») \right |< \left | f_{n}(x’)-f_{n}(x») \right |+2\varepsilon$$ Отсюда следует, что при любом разбиении [latex]\omega _{i}(f)\leq \omega _{i}(f_{n})+2\varepsilon [/latex], так что $$\sum_{i=0}^{s-1}\omega _{i}(f)\Delta x_{i}\leq \sum_{i=0}^{s-1}\omega _{i}(f_{n})\Delta x_{i}+2\varepsilon \left ( b-a \right )$$ Первое слагаемое справа мало в силу интегрируемости [latex]f_{n}[/latex], т.е. [latex]\exists \delta > 0, \; \forall \prod ,\; d(\prod )< \delta [/latex], первое слагаемое справа будет меньшим, чем [latex]\varepsilon [/latex]. Поэтому, в силу критерия интегрируемости в терминах колебаний, получаем, что функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex].
1

[свернуть]

Тесты

равномерная сходимость и интегрирование

Проверьте свои знания по теме «Равномерная сходимость и интегрирование»

Равномерная сходимость последовательностей и рядов

Функциональные последовательности

Если каждому натуральному числу [latex]n[/latex] ставится в соответствие по некоторому закону функция [latex]f_n(x)[/latex], определенная на множестве [latex]E[/latex], то говорят, что на множестве [latex]E[/latex] задана функциональная последовательность [latex]\left \{f_n (x)\right \}[/latex]. Множество [latex]E[/latex] называется областью определения последовательности [latex]\left \{f_n (x)\right \}[/latex].

Если для некоторого [latex]x_0 \in E[/latex] числовая последовательность [latex]\left \{f_n (x_0) \right \}[/latex] сходится, то говорят, что последовательность функций [latex]\left \{f_n (x) \right \}[/latex] сходится в точке [latex]x_0[/latex]. Последовательность функций, сходящуюся в каждой точке [latex]x \in E[/latex], называют сходящейся на множестве [latex]E[/latex].

Если [latex]\underset {n \to \infty}{\lim} f_n(x) = f(x)[/latex] для всех [latex]x \in E[/latex], то говорят, что последовательность [latex]\left \{f_n (x) \right \}[/latex] на множестве [latex]E[/latex] сходится к функции [latex]f(x)[/latex]. Эту функцию называют предельной функцией последовательности.

Равномерная сходимость функциональных последовательностей

Пусть задана последовательность функций [latex]\left \{ f_n(x) \right \}[/latex] и предельная функция [latex]f(x)[/latex]. Говорят, что последовательность функций равномерно сходится на множестве [latex]E[/latex] к функции [latex]f(x)[/latex] если
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|f_n(x)-f(x) \right| < \varepsilon .$$
Последовательность [latex]\left \{ f_n(x) \right \}[/latex] называется равномерно сходящейся на [latex]E[/latex], если существует функция [latex]f(x)[/latex], к которой она равномерно сходится.

Спойлер

Рассмотрим последовательность [latex]\left \{f_n(x) \right \}[/latex], [latex]f_n(x) = \frac{1}{n}x^n[/latex] на отрезке [latex]\left [ 0;1 \right ][/latex]. Она равномерно сходится на этом отрезке.

thirdtopic

Действительно, так как [latex]0 < \frac{1}{n}x^n < \frac{1}{n}[/latex] и [latex]\underset{n \to \infty}{\lim} \frac{1}{n} = 0[/latex], то для любой точности [latex]\varepsilon > 0[/latex] мы можем выбрать номер [latex] n_\varepsilon = \left \lceil \frac{1}{\varepsilon } \right \rceil + 1[/latex], начиная с которого все последующие члены ряда будут меньше [latex]\varepsilon[/latex], [latex]\left | f_n(x) \right | < \varepsilon[/latex]. Значит последовательность сходится равномерно к нулю на [latex]\left [ 0;1 \right ][/latex].

[свернуть]

Функциональные ряды

Аналогично вводим понятие функциональных рядов. Пусть каждому натуральному числу [latex]n[/latex] ставится в соответствие по некоторому закону функция [latex]u_n(x)[/latex], определенная на множестве [latex]E[/latex]. Формально говоря нам дана функциональная последовательность [latex]\left \{ u_n(x) \right \}[/latex].

Выражение вида [latex]u_{ 1 }(x)+u_2(x) +\dots +u_n(x) +\dots =\overset{\infty}{\underset{n=1}{\sum}}u_n(x)[/latex] называется функциональным рядом. Если для некоторого [latex]x_0 \in E[/latex] числовой ряд [latex]\sum_{n=1}^{\infty} u_n(x_0)[/latex] сходится, то говорят, что функциональный ряд [latex]\sum_{n=1}^{\infty} u_n(x)[/latex] сходится в точке [latex]x_0[/latex]. Функциональный ряд, сходящийся в каждой точке [latex]x \in E[/latex], называют сходящимся на множестве [latex]E[/latex].

Сумма [latex]n[/latex] первых членов ряда [latex]S_n(x) = \overset{n}{\underset{k=1}{\sum}}u_k(x)[/latex] называется его частичной суммой. Заметим, что частичная сумма сама является функцией. Мы получаем функциональную последовательность [latex]\left \{ S_n(x) \right \}[/latex].

Спойлер

Изучим сходимость ряда
$$x^2 + \frac{x^2}{1+x^2} + \dots + \frac{x^2}{(1+x^2)^n} + \dots,$$
Где [latex]x[/latex] — действительное число. Этот ряд сходится при всех [latex]x[/latex]. При [latex]x \neq 0[/latex] мы имеем бесконечно убывающую геометрическую прогрессию со знаменателем [latex]q = \frac{1}{1+x^2}[/latex], [latex] 0 < q < 1[/latex]. Таким образом:
$$x^2 + \frac{x^2}{1+x^2} + \dots + \frac{x^2}{(1+x^2)^n} + \dots = \frac{x^2}{1-\frac{1}{1+x^2}} = 1 + x^2 .$$
При [latex]x = 0[/latex] каждый член ряда равен нулю и тогда сумма всего ряда равна нулю.

[свернуть]

Равномерная сходимость функциональных рядов

Пусть задан функциональный ряд [latex]\overset{\infty}{\underset{n=1}{\sum}}u_n(x)[/latex], члены которого являются функциями, определенными на множестве [latex]E[/latex]. Функциональный ряд называется равномерно сходящимся на множестве [latex]E[/latex], если последовательность его частичных сумм равномерно сходящаяся на множестве [latex]E[/latex]. Согласно определению равномерной сходимости последовательности функции, существует такая функция [latex]S(x)[/latex], что
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|S_n(x)-S(x) \right| < \varepsilon .$$
Обозначим [latex]S_n(x)-S(x)=r_n(x)[/latex] — [latex]n[/latex]-ый остаток ряда, получаем [latex]r_n(x) = \overset{\infty}{\underset{k=n+1}{\sum}}u_k(x)[/latex]. Тогда условие сходимости ряда примет вид: $$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|r_n(x)\right| < \varepsilon .$$
Это означает, что какое бы мы маленькое [latex]\varepsilon[/latex] не взяли, начиная с некоторого номера [latex]n[/latex], [latex]n[/latex]-ый остаток ряда будет меньше этого [latex]\varepsilon[/latex].

Необходимое условие равномерной сходимости функционального ряда

Теорема

Если функциональный ряд [latex]\overset{\infty}{\underset{n=1}{\sum}}u_n(x)[/latex] равномерно сходится на множестве [latex]E[/latex], то последовательность его членов [latex]\left \{ u_n(x) \right \}[/latex] равномерно стремится к нулю на множестве [latex]E[/latex].

Доказательство

Обозначим частичные суммы ряда как [latex]S_n(x)[/latex], а сумму ряда (предельную функцию последовательности частичных сумм) как [latex]S(x)[/latex]. Согласно определению равномерной сходимости ряда
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|S_n(x)-S(x) \right| < \frac{\varepsilon}{2} ,$$
поэтому для [latex]\forall n \ge n_\varepsilon[/latex] справедливо также неравенство
$$\left| u_{ n+1 }(x) \right| =\left| S_{ n+1 }(x)-S_{ n }(x) \right| =\left| \left[ S_{n+1}(x)-S(x) \right] + \left[S(x) — S_n(x) \right] \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon .$$
А это и означает равномерную сходимость к нулю последовательности [latex]\left \{ u_n(x) \right \}[/latex].

Список Литературы

Равномерная сходимость последовательностей и рядов

После прочтения статьи, для закрепления материала, рекомендуется пройти тест по данной теме


Таблица лучших: Равномерная сходимость последовательностей и рядов

максимум из 60 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Критерий сходимости рядов с неотрицательными слагаемыми

Теорема

Рассмотрим ряд в котором все члены ряда неотрицательны, т.е. ([latex]\forall n \in N \rightarrow a_{n}\geq 0[/latex]). Для того чтобы ряд сходился, необходимо и достаточно, чтобы последовательность его частичных сумм была ограниченна сверху.

Доказательство

Так как [latex]a_{n}\geq 0[/latex], то [latex]S_{n}=S_{n-1}+a_{n}\geq S_{n-1}[/latex]. Из этого следует что последовательность частичных сумм монотонно возрастает. Если ряд сходится это означает что сходится последовательность его частичных сумм. По теореме об ограниченности сходящейся последовательности сходимость последовательности частичных сумм эквивалентна ограниченности этой последовательности.

Пример

Рассмотрим ряд:$$\sum_{n=1}^{\infty }\frac{1}{n^{\alpha }},$$ где [latex]\alpha>0[/latex]. При [latex]\alpha=1[/latex] получаем гармонический ряд, а он как известно расходится.
При [latex]0<\alpha<1[/latex] имеем:$$S_{n}(\alpha)=1+ \frac{1}{2^{\alpha}}+\cdots +\frac{1}{n^{\alpha}}\geq n \cdot \frac{1}{n^{\alpha}}=n^{1-\alpha}\underset{n\rightarrow \infty }{\rightarrow}\infty $$ Из этого следует, что [latex]S_{n}(\alpha)\rightarrow +\infty [/latex], а из этого следует расходимость ряда.
Теперь рассмотрим случай [latex]\alpha>1[/latex]. Выберем такое натуральное [latex]m[/latex], что [latex]n<2^{m}[/latex]. Тогда имеем:$$S_{n}(\alpha)\leq S_{2^{m}-1}(\alpha)=1+\left ( \frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}} \right )+\left ( \frac{1}{4^{\alpha}}+\frac{1}{5^{\alpha}}+\frac{1}{6^{\alpha}}+\frac{1}{7^{\alpha}} \right )+$$$$+\cdots +\left ( \frac{1}{(2^{m-1})^{\alpha}}+\frac{1}{(2^{m-1}+1)^{\alpha}}+\cdots +\frac{1}{(2^{m}-1)^{\alpha}} \right )\leq $$$$\leq 1+2^{1-\alpha}+(2^{2})^{1-\alpha}+\cdots +(2^{m-1})^{1-\alpha}=$$$$=1+2^{1-\alpha}+(2^{1-\alpha})^{2}+\cdots +(2^{1-\alpha})^{m-1}=\frac{1-(2^{1-\alpha})^{m}}{1-2^{1-\alpha}}$$ Отсюда следует, что при [latex]\alpha>1[/latex] имеем [latex]S_{n}(\alpha)\leq \frac{1}{1-2^{1-\alpha}}[/latex], т.е. последовательность частичных сумм ограниченна сверху, и по теореме о сходимости рядов с неотрицательными членами ряд сходится при [latex]\alpha>1[/latex].

Список Литературы

Тест на проверку знаний по данной теме.

Таблица лучших: Критерий сходимости рядов с неотрицательными слагаемыми

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных