Критерий Коши

Теорема

Для того чтобы ряд \sum_{n=1}^{\infty}{a_{n}} сходился, необходимо и достаточно, чтобы для любого \varepsilon >0 существовал такой номер N_{\varepsilon }, что для любого n>N_{\varepsilon } и при любом натуральном p > 0 выполнялось неравенство:$$\left| a_{n+1}+a_{n+2}+…+a_{n+p} \right|<\varepsilon$$.

Доказательство

По определению, сходимость ряда эквивалентна сходимости последовательности его частичных сумм S_{n}. В силу критерия Коши для последовательностей, сходимость последовательности {S_{n}} эквивалентна ее фундаментальности. Фундаментальность последовательности {S_{n}} означает, \forall \varepsilon >0, \exists N_{\varepsilon }: \forall n\geq N_{\varepsilon }, \forall p\in \mathbb{N}\rightarrow \left| S_{n+p}- S_{n} \right|<\varepsilon. При этом:S_{n+p}-S_{n}=a_{1}+\ldots+a_{n}+a_{n+1}+\ldots+a_{n+p}-(a_{1}+\ldots+a_{n})=a_{n+1}+\ldots+a_{n+p}, тем самым теорема доказана.
Спойлер

Покажем, что ряд $$\sum_{n=1}^{\infty}\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$$ расходится. Для любого n и p=n:$$\sum_{k=n+1}^{n+p}a_{k}=\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2n}>\frac{1}{2n}+\frac{1}{2n}+\cdots+\frac{1}{2n}>\frac{n}{2n}=\frac{1}{2},$$ т.е. для любого n при \varepsilon =\frac{1}{2} и p=n критерий Коши не выполняется. Тем самым этот ряд расходится.

[свернуть]

Список Литературы

Тест на проверку знаний по данной теме.

Таблица лучших: Критерий Коши сходимости ряда

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *