M58. О построении треугольника на заданных биссектрисах

Задача из журнала «Квант» (1971 год, 8 выпуск)

Условие

На плоскости даны три прямые, пересекающиеся в одной точке. На одной из них отмечена точка. Известно, что прямые являются биссектрисами некоторого треугольника, а отмеченная точка — одна из его вершин. Построить этот треугольник.

Первое решение

рис.1.

Предположим, что $O$ — точка пересечения биссектрис $AK,$ $BL$ и $CM$ треугольника $ABC$ (рис. 1); тогда $$\angle MOB\;=\;\angle OCB\;+\;\angle OBC\;=\;\frac12(\angle ACB\;+\;\angle ABC)\;=\;\frac{\mathrm\pi}2\;-\;\angle CAK,$$ то есть $\angle CAK=\frac{\mathrm\pi}2-\alpha.$ Поэтому, если заданы прямые $AK,$ $BL$ и $CM$ и точка $A,$ то, построив по одну и другую сторону от луча $AO$ углы, равные $\varphi=\frac{\mathrm\pi}2-\alpha,$ мы найдем искомые вершины $B$ и $C$ (при условии, что $\varphi>0,$ $\varphi<\beta$ и $\varphi<\gamma$). Нужно еще доказать, что у построенного треугольника $ABC$ прямые $BL$ и $CM$ идут по биссектрисам. Углы $ABL$ и $ACM$ легко подсчитать — они равны соответственно $\frac{\mathrm\pi}2-\beta$ и $\frac{\mathrm\pi}2-\gamma.$ Трудность заключается лишь в доказательстве того, что $\angle LBC=\frac{\mathrm\pi}2-\beta$ и $\angle MCA=\frac{\mathrm\pi}2-\gamma$ (хотя ясно, что их сумма равна $\alpha$); ее можно преодолеть, например, так: если $\angle LBC<\angle ABL,$ то биссектриса угла $ABC$ пересекает отрезок $AO,$ поэтому биссектриса угла $ACB$ тоже его пересекает, и значит, $\angle MCB<\angle ACM,$ поэтому сумма $\angle LBC+\angle MBC$ меньше $(\frac{\mathrm\pi}2-\beta)+(\frac{\mathrm\pi}2-\gamma)=\alpha.$ Точно так же можно показать, что невозможен случай $\angle LBC>\angle ABL.$

Второе решение

рис. 2.

Построим точки $A^\prime$ и $ A^{\prime\prime}$, симметричные данной точки $A$ относительно биссектрис, не проходящих через $A.$ Ясно,что обе точки $A^\prime$ и $ A^{\prime\prime}$ должны лежать на прямой $BC$ — на стороне искомого треугольника $ABC$ (или на ее продолжении). Проведя прямую через $A^\prime$ и $ A^{\prime\prime},$ мы тем самым найдем нужные точки $B$ и $C$ (рис. 2).

Заметим, что хотя второе решение белее эффектно, но при таком подходе труднее выписать условия, при которых задача имеет решение. Эти условия таковы: $\alpha<\frac{\mathrm\pi}2,\;\beta<\frac{\mathrm\pi}2,\;\gamma<\frac{\mathrm\pi}2$ (поскольку $\alpha+\beta+\gamma=\mathrm\pi,$ их можно записать и так: $\alpha+\beta>\frac{\mathrm\pi}2,\;\beta+\gamma>\frac{\mathrm\pi}2,\;\gamma+\alpha>\frac{\mathrm\pi}2).$ Если они выполнены, то решение единственно. Подумайте, как можно получить эти условия при каждом из изложенных выше способов решения

М1339. О связи площади, угла и биссектрисы, проведенной из этого угла

Задача из журнала «Квант» (2002 год, 10 выпуск)

Условие

Дан треугольник $ABC$. Пусть $S$ — его площадь, $\gamma$ — угол $ACB$, а $l$ — длина биссектрисы, проведенной из вершины $C.$

  1. Докажите, что $S \geqslant l^{2} \mathop{\rm tg} \frac \gamma{2}.$
  2. Для каких треугольников $ABC$ выполняется равенство?

Первое решение

Обозначим через $a$ и $b$ стороны $BC$ и $AC$ треугольника $ABC$.

Имеем $$ l=\frac {2ab}{a+b} \cos \frac \gamma{2}$$ (докажите это).

Тогда $$ \begin{multline*}
l^2 \mathop{\rm tg} \frac \gamma{2} = \frac {4a^2b^2}{\left(a+b \right)^2}\cos^2 \frac \gamma{2} \cdot \frac {\sin \frac \gamma{2}}{\cos \frac \gamma{2}} = \\ = \frac {4ab}{a^2+b^2+2ab} \cdot \frac 12 ab \cdot 2\sin \frac \gamma{2} \cos \frac \gamma{2}\leqslant \\
\leqslant \frac {4ab}{2ab+2ab} \cdot \frac 12 ab \sin \gamma = S.
\end{multline*} $$

Очевидно, что равенство выполняется тогда и только тогда, когда $a^2+b^2=2ab$, то есть тогда и только тогда, когда $a=b.$

Второе решение

Пусть $a>b,$ тогда $\angle A > \angle B, $ и угол $CDB$ — тупой. Проведем через точку $D$ отрезок $A’B’$ (см. рисунок), перпендикулярный $CD.$

рис. 1

Поскольку $BD>AD$ (это легко следует из соотношения $\frac {BC}{AC} = \frac {a}{b} > 1$), площадь треугольника $BDB’$ больше площади треугольника $ADA’.$ Поэтому $S>S_{A’CB’}=l^2 \mathop{\rm tg} \frac \gamma{2}.$ При $a=b$ равенство $S = l^{2} \mathop{\rm tg} \frac \gamma{2}$ очевидно.

Н. Немировская, В. Сендеров

Дополнения

Докажем, что $ l=\frac {2ab}{a+b} \cos \frac \gamma{2}.$

Вычислим площади треугольников $BCD$, $ACD$ и $ABC:$ $$ S_{BCD} = \frac 12 \cdot BC \cdot CD \cdot \sin \angle BCD = \frac 12 b l \sin \frac \gamma{2}. $$ $$ S_{ACD} = \frac 12 \cdot AC \cdot CD \cdot \sin \angle ACD = \frac 12 a l \sin \frac \gamma{2}.$$ $$S_{ABC} = \frac 12 \cdot AC \cdot BC \cdot \sin \angle BCA = \frac 12 a b \sin \gamma.$$

Выразим $l$, используя равенство $S_{ABC} = S_{BCD} + S_{ACD}:$ $$
\frac 12 ab \cdot \sin \gamma = \frac 12 b l \cdot \sin \frac \gamma{2} + \frac 12 a l \cdot \sin \frac \gamma{2} \Leftrightarrow \frac 12 a b \cdot \sin \gamma = \frac 12 \left(a+b \right) l \sin \frac \gamma{2} \Leftrightarrow $$ $$ \Leftrightarrow l = \frac {ab\sin \gamma}{ \left(a+b \right) \sin \frac \gamma{2}} \Leftrightarrow l = \frac {ab \cdot 2\sin \frac \gamma{2} \cos \frac \gamma{2}}{\left(a+b \right) \sin \frac \gamma{2} } \Leftrightarrow l = \frac {2ab}{a+b} \cos \frac \gamma{2}. $$

M1276. О высотах треугольников, пересекающихся в одной точке

Задача из журнала «Квант» (1991 год, 9 выпуск)

Условие

Для данной хорды $MN$ окружности рассматриваются треугольники $ABC$, основаниями которых являются диаметры $AB$ этой окружности, не пересекающие $MN$, а стороны $AC$ и $BC$ проходят через концы $M$ и $N$ хорды $MN$. Докажите, что высоты всех таких треугольников $ABC$, опущенные из вершины $C$ на сторону $AB$, пересекаются в одной точке.

Доказательство

Точки $M$ и $N$ — основания высот треугольника $ABC$, опущенных из вершин $A$ и $B$, поэтому третья высота проходит через точку $H$ их пересечения, причем точки $C$, $M$, $N$ и $H$ лежат на одной окружности $δ$ с диаметром $CH$. Пусть $P$ — центр этой окружности. Заметим, что при движении диаметра $AB$ величина угла $C$ треугольника остаётся неизменной, — она измеряется полуразностью постоянных по величине дуг  $AB$ и $MN$ (см. рисунок). Поскольку хорда $MN$ неподвижна, остаётся неизменной и окружность $δ$ (по которой движутся точка $C$ и диаметрально противоположная ей точка $H$), а тем самым и её центр $P$: диаметр $CH$ — участок интересующей нас высоты — просто вращается вокруг точки $P$.

Cycle

 Е. Куланин

М1773. О равенстве четырехугольника и треугольника

Задача из журнала «Квант» (2001 год, 3 выпуск)

Условие

Высота $CD$ и биссектриса $AE$ прямоугольного треугольника $ABC (\angle C = 90 ^{\circ} )$ пересекаются в точке $F$ (см. рисунок). Пусть $G$ — точка пересечения прямых $ED$ и $BF$. Докажите, что площади четырехугольника $CEGF$ и треугольника $BDG$ равны.

Решение

Так как $AE$ — биссектриса $\triangle ABC$, а $AF$ — биссектриса $\triangle ADC$, $$\frac {EC}{BE} = \frac {AC}{AB} = \cos \angle BAC = \frac {DA}{AC} = \frac {DF}{FC},$$ $$EC \times FC = BE \times DF = (BC — EC) \times (CD — CF),$$ $$ BC \times CD = BC \times CF + EC \times CD. $$ Умножив обе части последнего равенства на $ \frac {1}{2} \sin \angle BCD$, получим, что $$ S_{BCD} = S_{BCF} + S_{ECD}. $$ Но $$ S_{BCD} = S_{CEGF} + S_{BEG} + S_{BGD} + S_{DFG},$$ $$ S_{BCF} = S_{GECF}+S_{BEG}, S_{ECD} = S_{GECF} + S_{DFG}, $$ откуда и следует требуемое равенство.

И. Жук

M1815. О перпендикулярах в неплоском четырехугольнике

Задача из журнала «Квант»(2002 год, 2 выпуск)

Условие

Общие перпендикуляры к противоположным сторонам неплоского четырехугольника $ABCD$ взаимно перпендикулярны.

Докажите, что они пересекаются.

Решение

Инструментом решения является теорема Менелая для пространственного четырехугольника, утверждающая, что точки $X,$ $U,$ $Y,$ $V,$ взятые на сторонах четырехугольника $AB,$ $BC,$ $CD,$ $DA$ или их продолжениях, лежат в одной плоскости тогда и только тогда, когда $\frac{AX}{XB} \cdot \frac{BU}{UC} \cdot \frac{CY}{YD} \cdot \frac{DV}{VA} = 1.$

Для доказательства теоремы Менелая продолжим прямые $XU$ и $YV$ до пересечения с $AC.$ Точки $X,$ $U,$ $Y,$ $V$ лежат в одной плоскости тогда и только тогда, когда все три прямые пересекаются в одной точке $P$ либо параллельны (рис. 1).

Рис. 1

Но в этом случае, применяя теорему Менелая к треугольникам $ABC$ и $ACD,$ получаем $\frac{AX}{XB} \cdot \frac{BU}{UC} \cdot \frac{CP}{PA} = 1$ и $\frac{CY}{YD} \cdot \frac{DV}{VA} \cdot \frac{AP}{PC} = 1.$ Перемножая эти равенства, получим требуемое соотношение.

Пусть теперь $XY$ – перпендикуляр к сторонам $AB$ и $CD,$ $UV$ – перпендикуляр к $AD$ и $BC.$ При ортогональной проекции на плоскость, параллельную $XY$ и $UV,$ прямой угол между прямыми $AB$ и $XY$ остается прямым. Поэтому четырехугольник $ABCD$ проецируется в прямоугольник $A’B’C’D’,$ а прямые $XY$ и $UV$ – в параллельные его сторонам прямые $X′Y′$ и $U′V′$ (рис. 2). Очевидно, что $\frac{A’X’}{X’B’} \cdot \frac{B’U’}{U’C’} \cdot \frac{C’Y’}{Y’D’} \cdot \frac{D’V’}{V’A’} = 1.$

Рис. 2

Следовательно, $\frac{AX}{XB} \cdot \frac{BU}{UC} \cdot \frac{CY}{YD} \cdot \frac{DV}{VA} = 1,$ и по теореме Менелая точки $X,$ $Y,$ $U,$ $V$ лежат в одной плоскости. Отсюда сразу следует утверждение задачи.

А.Заславский