Первая теорема Абеля

Теорема

Если степенной ряд $$\sum\limits_{n=0}^{\infty}a_{n}z^{n}$$ сходится при $z=z_0\neq0$, то он сходится, и притом абсолютно, при любом $z$, для которого $\left|z\right|<\left|z_{0}\right|$.

abel

Доказательство

По условию ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится при $z=z_{0}$. Обозначим:
$$K=\left\{z:\left|z\right|<\left|z_{0}\right|\right\}.$$

Положим, что $\rho=\frac{\left|z \right|}{\left|z_{0} \right|}$. Причем так как $\left|z \right|<\left|z_{0} \right|$, то $\rho<1$.

Из сходимости ряда $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ в точке $z_{0}$ следует сходимость числового ряда вида $\sum\limits_{n=0}^{\infty}a_{n}z_{0}^{n}$. Следовательно, выполняется необходимое условие сходимости ряда, а именно: $$\lim\limits_{ n \to 0}a_{n}z_{0}^{n}=0.$$

Тогда последовательность $\left\{a_{n}z_{0}^{n}\right\}$ ограничена, т.е. $$\exists M>0\; \forall n:\left|a_{n}z_{0}^{n}\right|< M.$$

Имеем следующее: $\left|a_{n}z^{n}\right|=$$\left|a_{n}z^{n}\right|\cdot \left|\frac{z_{0}^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\cdot\frac{z^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\right|\cdot\left|\frac{z^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\right|\rho^{n} < M\rho^{n}. $

Рассмотрим ряд $\sum\limits_{n=0}^{\infty}M\rho^{n}$. Так как мы знаем, что $0\leq\rho<1$, то, в силу необходимого условия сходимости ряда, данный ряд сходится.

Тогда, по признаку сравнения в форме неравенств, ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится абсолютно для $\forall z \in K$.

Следствие 1

Если степенной ряд $$\sum\limits_{n=0}^{\infty}a_{n}z^{n}$$ расходится при $z=z_{0}\neq0$, то он расходится при любом $z$, для которого $\left|z\right|>\left|z_{0}\right|$.
sledab

Спойлер

Докажем от противного. Пусть ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}_0$ расходится, а ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится. В этом случае, по теореме Абеля, сходится и ряд $\sum\limits_{n=0}^{\infty}a_{n}z_{0}^{n}$. Пришли к противоречию.

[свернуть]

Следствие 2

Если степенной ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится в точке $z_{0}\neq0$, то в замкнутом круге $K_1=\left\{z:\left|z\right|\leq \vartheta\right\}$, где $\vartheta<\left|z_{0}\right|$ этот ряд сходится абсолютно и равномерно.

Спойлер

Если $z \in K_1$, то $\left|a_{n}z^{n}\right|=$$\left|a_{n}z^{n}\right|\cdot \left|\frac{z_{0}^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\cdot\frac{z^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\right|\cdot\left|\frac{z^{n}}{z_{0}^{n}}\right|\leq M\cdot {\left(\frac{\vartheta}{z_{0}}\right)}^{n},$ так как известно, что: $\left|a_{n}z_{0}^{n}\right|<M$, а $\left|z\right|<\vartheta.$

Положим, $p=\frac{\vartheta}{z_{0}}$, причем $0\leq p<1$.

Ряд $\sum\limits_{n=0}^{\infty}Mp^{n}$ сходится. Следовательно, по признаку Вейерштрасса ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится абсолютно и равномерно в круге $K_{1}$.

[свернуть]

Литература

Теорема Абеля

Тест на закрепление вышеизложенного материала.


Таблица лучших: Теорема Абеля

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Определение и свойства кратного интеграла Римана

Необходимые понятия

Разбиения

Пусть множество $G$ измеримо по Жордану в $\mathbb{R}^{n}$. Совокупность измеримых по Жордану в $\mathbb{R}^{n}$ и попарно непересекающихся множеств $G_{1}, …, G_{N}$ называется разбиением $G$, если $G=\bigcup_{i=1}^{N}G_{i}.$ Разбиение будем обозначать буквой $T$.

Пусть $d\left ( G_{i} \right )$ есть диаметр множества $G_{i}$, т. е. $$d\left ( G_{i} \right )=\underset{x\in G_{i}, y\in G_{i}}{\sup}\rho \left ( x,y \right ).$$

Число $l\left ( T \right )=\underset{i=\overline{1,N}}{\max d\left(G_{i} \right )}$ будем называть мелкостью разбиения $T$.

Разбиение $T=\left \{ G_{i} \right \},$ $i=\overline{1,N}$, будем называть продолжением разбиения $ {T}’=\left \{ {G}’_{i} \right \},$ $i=\overline{1,N}$, и писать $T\prec{T}’$, если каждое из множеств $G_{i}$ является подмножеством некоторого множества ${G}’_{k}$. Очевидно, что из $T\prec{T}’$ следует, что $l\left ( T \right )\leq l\left ( {T}’ \right )$.

Интегральные суммы Римана. Суммы Дарбу

Пусть функция $f\left ( x \right )$ определена на измеримом по Жордану множестве $G$, а $T$ есть разбиение множества $G:~ T=\left \{ G_{i} \right \}, i=\overline{1,N}.$ Возьмем в каждом из множеств $G_{i}$ по точке $\xi _{i}$. Выражение $$\sigma _{T}\left ( f, \xi, G\right )=\sum_{i=1}^{N}f\left ( \xi _{i} \right )m\left ( G_{i} \right)$$ называется интегральной суммой Римана функции $f\left ( x \right )$ на множестве $G$, соответствующей разбиению $T$ и выборке $\xi =\left ( \xi _{1}, …, \xi _{N} \right )$. Иногда для краткости сумма Римана обозначается просто через $\sigma _{T}$.

Если функция $f\left ( x \right )$ ограничена на множестве $G$, то для любого разбиения $T=\left \{ G_{i} \right \}, i=\overline{1,N}$, определены числа $$m_{i}=\underset{x\in G_{i}}{\inf}f\left ( x \right ), ~~M_{i}=\underset{x\in G_{i}}{\sup }f\left ( x \right ).$$

Выражения $$S_{T}=\sum_{i=1}^{N}M_{i}m\left ( G_{i} \right ),~~s_{T}=\sum_{i=1}^{N}m_{i}m\left ( G_{i} \right )$$ называются верхней и нижней суммами Дарбу, соответствующими разбиению $T$.

Определение

Число $I$ называется пределом интегральной суммы $\sigma _{T}$ при мелкости разбиения $l\left ( T \right )\rightarrow 0$, если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого разбиения $T$ с мелкостью $l\left ( T \right )< \delta $ и для любой выборки выполняется неравенство $$\left | I-\sigma _{T}\left ( f, \xi , G \right ) \right |< \varepsilon.$$

Если число $I$ есть предел интегральной суммы при $l\left ( T \right )\rightarrow 0$, то будем писать $I=\underset{l\left ( T \right )\rightarrow 0}{\lim }\sigma _{T}$, само число $I$ будем называть кратным интегралом Римана от функции $f\left ( x \right )$ по множеству $G$, а функцию $f\left ( x \right )$ — интегрируемой на множестве $G$. Для кратного интеграла Римана используются следующие обозначения: $$\underset{G}{\int}f\left(x\right)dx,~~\underset{n}{\underbrace{\underset{G}{\int…\int }}}f\left ( x_{1}, …, x_{n} \right )dx_{1}…dx_{n}.$$

В случае $n=2$ интеграл называется двойным, а в случае $n=3$ — тройным. Обозначения для двойного и тройного интеграла: $$\underset{G}{\iint}f\left ( x,y \right )dxdy,~~\underset{G}{\iiint} f\left ( x,y,z \right)dxdydz.$$

Свойства кратного интеграла

Свойство 1.
Справедливо равенство $\underset{G}{\int}1\cdot dx=m\left ( G \right )$.

Спойлер

$\square$ Для любого разбиения $T$ выполнено равенство $$\sigma_{T}\left ( 1,\xi, G \right )=\sum_{i=1}^{N}m\left ( G_{i} \right ). ~~ \blacksquare$$

[свернуть]
Свойство 2.
Если $f\left ( x \right )> 0$ и $f\left ( x \right )$ — интегрируемая на измеримом по Жордану множестве $G$ функция, то $\underset{G}{\int }f\left ( x \right )dx\geq 0$.

Спойлер

Аналогично доказательству соответствующего свойства определенного интеграла от положительной функции.

[свернуть]
Свойство 3.
Если $f_{1}\left ( x \right )$ и $f_{2}\left ( x \right )$ — интегрируемые на множестве $G$ функции, а $\alpha$ и $\beta$ — произвольные вещественные числа, то и функция $\alpha f_{1}\left ( x \right )+\beta f_{2}\left ( x \right )$ интегрируема на $G$, причем $$\underset{G}{\int }\left ( \alpha f_{1}\left ( x \right ) + \beta f_{2}\left ( x \right ) \right )dx=$$ $$=\alpha \underset{G}{\int }f_{1}\left ( x \right )dx+\beta \underset{G}{\int }f_{2}\left ( x \right )dx.$$

Спойлер

Аналогично доказательству соответствующего свойства аддитивности определенного интеграла.

[свернуть]
Свойство 4.
Если $f_{1}\left ( x \right )$ и $f_{2}\left ( x \right )$ — интегрируемые на множестве $G$ функции и $f_{1}\left ( x \right )\leq f_{2}\left ( x \right )$ при $x\in G$, то $$\underset{G}{\int }f_{1}\left ( x \right )dx\leq \underset{G}{\int }f_{2}\left ( x \right )dx.$$

Спойлер

Аналогично доказательству соответствующего свойства монотонности определенного интеграла.

[свернуть]
Свойство 5.
Если функция $f\left ( x \right )$ непрерывна на измеримом связном компакте $G$, то найдется точка $\xi \in G$ такая, что $$\underset{G}{\int }f\left ( x\right )dx=f\left ( \xi \right )m\left ( G \right ).$$

Спойлер

$\square$ Если $m\left ( G \right )=0$, то равенство очевидно. Пусть $m\left ( G \right )>0$, $\mu =\underset{x\in G}{\min} f,~M=\underset{x \in G}{\max}f$. Тогда $\mu\leq f\left ( x \right )\leq M$ при $x \in G$, $\mu m\left ( G \right )\leq \underset{G}{\int }f\left ( x \right )dx\leq Mm\left ( G \right ).$

Следовательно, $$\mu \leq \frac{1}{m\left ( G \right )}\underset{G}{\int }f\left ( x \right )dx\leq M.$$

Функция, непрерывная на связном множестве и принимающая на нем значения $\mu$ и $M$, принимает и все промежуточные значения, а поэтому существует точка $\xi \in G$ такая, что $$f\left ( \xi \right )= \frac{1}{m\left ( G \right )}\underset{G}{\int }f\left ( x \right )dx. ~~\blacksquare$$

[свернуть]
Свойство 6.
Если $\left \{ G_{k} \right \}, k=\overline{1,m}$, есть разбиение множества $G,$ то функция $f\left ( x \right )$ интегрируема на множестве $G$ в том и только том случае, когда она интегрируема на каждом из множеств $G_{k},$ причем $$\underset{G}{\int}f\left ( x \right )dx= \sum_{k=1}^{m}\underset{G_{k}}{\int}f\left ( x \right )dx.$$
Свойство 7.
Произведение интегрируемых на измеримом множестве $G$ функций есть интегрируемая на множестве $G$ функция.

Спойлер

Аналогично доказательству соответствующего свойства определенного интеграла.

[свернуть]
Свойство 8.
Если функция $f\left ( x \right )$ интегрируема на измеримом множестве $G$, то функция $\left | f\left ( x \right ) \right |$ также интегрируема и $$\left | \underset{G}{\int}f\left ( x \right )dx \right |\leq \underset{G}{\int }\left | f\left ( x \right ) \right |dx.$$

Спойлер

Аналогично доказательству соответствующего свойства определенного интеграла.

[свернуть]

Примеры

Пример 1

Определить какой знак имеет интеграл $\underset{x^2+y^2\leq 4}{\iint}\sqrt[3]{1-x^2-y^2}dxdy.$

Спойлер

В силу свойства аддитивности кратного интеграла, имеем: $$\underset{x^2+y^2\leq 4}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy=$$ $$=\underset{x^2+y^2\leq 1}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~+\underset{1\leq x^2+y^2\leq 2}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~+$$ $$+\underset{2\leq x^2+y^2\leq 4}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy.$$
Для каждой точки $\left ( x,y \right )$ из круга $x^2+y^2\leq 1$ найдется точка $\left ( \bar{x},\bar{y} \right )$ из кольца $1\leq x^2+y^2\leq 2$ такая, что $\sqrt[3]{1-\left ( x^2+y^2 \right )}+\sqrt[3]{1-\left ( \bar{x^2}+\bar{y^2 }\right )}=0$, поэтому приходим к выводу, что $$\underset{x^2+y^2\leq 1}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~+\underset{1\leq x^2+y^2\leq 2}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~=$$
$$=\underset{x^2+y^2\leq 2}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy,$$ $$\underset{x^2+y^2\leq 4}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~=\underset{2\leq x^2+y^2\leq 4}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy.$$
Так как $\sqrt[3]{1-\left (x^2+y^2 \right )}< 0$, когда $\left ( x,y \right )\in \left \{ 2\leq x^2+y^2 \leq 4\right \}$, то (принимая во внимание последнее равенство) исследуемый интеграл отрицателен.

При решении данного примера мы воспользовались тем, что интеграл Римана интегрируемой функции $f$ не зависит от способа разбиения области интегрирования и выбора точек $\xi_{i}$ в каждой из ячеек разбиения.

[свернуть]

Пример 2 (вычисление площади плоской фигуры с помощью двойного интеграла)

Вычислить площадь фигуры, занимающей область $D$, ограниченную линиями $x=y^2$ и $x+y=2$.

Спойлер

Если плоская фигура занимает область $D\subset XOY$, то ее площадь может быть вычислена с помощью двойного интеграла по его свойству о значении интеграла от функции, тождественно равной единице на области интегрирования. В результате получается формула для вычисления площади плоской фигуры с помощью двойного интеграла: $$S_{D}=\underset{D}{\iint}dS~~(*)$$


Строим область $D$ и записываем ее системой неравенств: $$D:\left\{\begin{matrix}-2\leq y\leq 1\\ y^{2}\leq x\leq 2-y\end{matrix}\right.$$ По формуле $(*)$ вычисляем площадь: $$S_{D}=\underset{D}{\iint }dS=\underset{D}{\iint }dxdy=\int\limits_{-2}^{1}dy\int\limits_{y^{2}}^{2-y}=$$ $$=\int\limits_{-2}^{1}dy~\cdot~x \Big|_{y^2}^{2-y}=\int\limits_{-2}^{1}\left ( 2-y-y^2 \right )dy=\left ( 2y-\frac{y^2}{2}-\frac{y^3}{3} \right )\Big|_{-2}^1=$$ $$2\left ( 1+2 \right )-\frac{1}{2}\left ( 1-4 \right )-\frac{1}{3}\left ( 1+8 \right )=4.5$$

Ответ: $S_{D}=4.5$ (кв. ед.).

[свернуть]

Пример 3 (вычисление объема с помощью двойного интеграла)

Пусть цилиндрический брус ограничен сверху непрерывной поверхностью $z=f\left (x,y \right)$, снизу — плоскостью $z=0$, с боков — цилиндрической поверхностью с образующими, параллельными оси $Oz$. Если указанная цилиндрическая поверхность вырезает из плоскости $Oxy$ квадрируемую замкнутую область $D$, то объем $V$ бруса вычисляется по формуле: $$V=\underset{D}{\iint}f\left ( x,y \right )dxdy.~~(**)$$

Найти объем тела, ограниченного поверхностями: $$z=x^2+y^2,~y=x^2,~y=1,~z=0.$$

Спойлер

Тело ограничено сверху параболоидом вращения $z=x^2+y^2$, снизу — плоскостью $Oxy$, с боков — цилиндрической поверхностью $y=x^2$ и плоскостью $y=1$, вырезающими из плоскости $Oxy$ квадрируемую замкнутую область $D=\left \{ -\leq x\leq 1,~x^2 \leq y \leq 1 \right \}.$ В точках множества $D$, симметричных относительно оси $Oy$, функция $z=x^2+y^2$ принимает равные значения, поэтому $$V=2\underset{x^2\leq y\leq 1}{\underset{0\leq x\leq 1}{\iint}}\left ( x^2+y^2 \right )dxdy=2\int\limits_{0}^{1}dx\int\limits_{x^2}^{1}\left ( x^2+y^2 \right )dy=$$ $$=2\int\limits_{0}^{1}\left ( x^2-x^4+\frac{1}{3}-\frac{x^6}{3} \right )dx=\frac{88}{105}.$$

[свернуть]

Кратный интеграл Римана

Тест: Кратный интеграл Римана.

Интегралы в смысле главного значения . Комплексная форма интеграла Фурье

Пусть функция $f(x): \mathbb{R}\rightarrow \mathbb{R}$ абсолютно интегрируема на любом конечном отрезке $[a,b]$.
Если существует конечный предел
$$ \lim_{N \rightarrow \infty}\intop_{-N}^{N} f(x)\,dx,$$
то этот предел будем называть интегралом в смысле главного значения и обозначать через $$v.p.\intop_{-\infty}^{+\infty} f(x)\,dx.$$ Таким образом,
$$v.p.\intop_{-\infty}^{+\infty} f(x)\,dx=\lim_{N \rightarrow \infty}\intop_{-N}^{N} f(x)\,dx.$$
Если $$\intop_{-\infty}^{\infty} f(x)\,dx$$ сходящийся, то он существует и в смысле главного значения. Обратное утверждение неверно. Ясно, что для любой нечетной, абсолютно интегрируемой на любом конечном отрезке функции интеграл от этой функции в смысле главного значения равен нулю.
Пусть функция $f(x)$ абсолютно интегрируема на отрезке$[a,\beta]$, содержащимся в отрезке $[a,b]$ и $c\overline{\in}[a,\beta]$, $c\in(a,b)$.
Тогда:
$$v.p.\intop_{a}^{b} f(x)\,dx=\lim_{\epsilon \rightarrow +0} \left[ \intop_{a}^{c-\varepsilon}f(x)\,dx — \intop_{c+\varepsilon}^{b}f(x)\,dx \right]$$
Пусть для абсолютно интегрируемой на $\mathbb{R}$ функции $f(x)$ справедливо представление в виде интеграла Фурье, т.е. $\forall x \in \mathbb{R}$ справедливо
$$f(x)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}\,dy \intop_{-\infty}^{+\infty}f(t)\cos{(y(x-t))}\,dt=$$

$$=\intop_{-\infty}^{+\infty}a(y)\cos{(yx)}\,dy+\intop_{-\infty}^{+\infty}b(y)\sin{(yx)}\,dy,(1)$$ где
$$a(y)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(t)\cos{(yt)}\,dt,$$ $$b(y)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(t)\sin{(yt)}\,dt.$$

Лемма 1. Если $f(x)$ — абсолютно итегрируемая на $\mathbb{R}$, то $a(y)$ и $b(y)$, непрерывны на $\mathbb{R}$.
Докажем непрерывность $a(y)$.
$$a(y)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(t)\cos{(yt)} \,dt$$
Из этого следует, что
$$\left|\triangle a(y)\right|=$$ $$=\left| a(y+\triangle y)-a(y)\right|\leq$$ $$\leq\frac{1}{\pi}\intop_{-\infty}^{+\infty}\left| f(t)\right|\left|\sin{(\frac{t\triangle y}{2})}\right|dt.(2)$$
Так как функция $f(t)$ абсолютно интегрируема, то интервал $(-\infty,+\infty)$ можно разбить на три таких интервала $(-\infty,-c)$,$(-c,c)$ и $(c,+\infty)$, что по бесконечным интервалам интегралы от функции
$\mid f(x) \mid$ меньше либо равны $\frac{\varepsilon}{3}$. Второй интеграл в формуле (2) меньше, чем
$$\frac{c}{2\pi}\mid \triangle y \mid \intop_{-c}^{c}\mid f(t) \mid\, dt,$$
и, следовательно $\exists\delta>0$что при $\mid \triangle y \mid < \delta$ второй интеграл в формуле(1) меньше $\frac{\varepsilon}{3}$. Из (*) следует, что при $\mid \triangle y \mid < \delta$
приращение $\mid \triangle a(y) \mid < \varepsilon$. Рассмотрим несобственный интеграл
$$K(y)=\intop_{-\infty}^{+\infty}f(t)\sin{(y(x-t))}\,dt=$$

$$=\intop_{-\infty}^{+\infty}f(t)(\sin{(yx)} \cos {(yt)}-\cos{(yx)}\sin{(yt)})\,dt=$$ $$=2\pi(a(y)\sin{(yx)}-b(y)\cos{(yx)}).$$
В силу леммы 1 функция $K(y)$ непрерывна на $\mathbb{R}$. Так как функция $K(y)$ нечетна, то
$$\frac{1}{2\pi}v.p.\intop_{-\infty}^{+\infty}K(y)\,dy=$$ $$=v.p.\intop_{-\infty}^{+\infty}\,dy\intop_{-\infty}^{+\infty}f(t)sin\,y(x-t)\,dt=0.(3)$$
Теорема 1. Если для абсолютно интегрируемой на $\mathbb{R}$ функции $f(x)$ справедливо $$f(x)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}\,dy \intop_{-\infty}^{+\infty}f(t)\cos{(y(x-t))}\,dt=$$

$$=\intop_{-\infty}^{+\infty}a(y)\cos{(yx)}\,dy+\intop_{-\infty}^{+\infty}b(y)\sin{(yx)}\,dy$$
то справедливо, что $$f(x)=v.p.\frac{1}{2\pi}\intop_{-\infty}^{+\infty}\left( \intop_{-\infty}^{+\infty}f(t)e^{-iyt}\,dt \right) e^{iyx}\,dy,(4)$$

$$f(x)=v.p.\frac{1}{2\pi}\intop_{-\infty}^{+\infty}\left( \intop_{-\infty}^{+\infty}f(t)e^{iyt}\,dt \right) e^{-iyx}\,dy.(5)$$
(4) получается умножением равенства (3) на мнимую единицу, сложить его с равенством (4) и воспользоваться формулами Эйлера
$$\cos{(y(x-t))}+I\sin{(y(x-t))}=e^{iy(x-t)}=e^{iyx}e^{-iyt}$$
Аналогично получается (5). Интеграл, стоящий в праваой части равенства (4), называется интегралом Фурье $f(x)$ в комплексной форме.

Замечание

Интеграл Фурье в комплексной форме может быть написан и для комплекснозначной абсолютно интегрируемой функции $f(x)=f_{1}(x)+if_{2}(x)$. Если для действительной и мнимой части функции $f(x)$, т.е. для $f_{1}(x)$ и $f_{2}(x)$, справедливо представление (4) интегралом Фурье, то очевидно, что такое представление справедливо и для функции $f(x)=f_{1}(x)+if_{2}(x).$

[свернуть]

Примеры

Пример 1.Представить интегралом Фурье в комплексной форме функцию$$ f(x)=\begin{cases}0,x<0\\h, 0 \leq x \leq \tau \\ 0, x>\tau \end{cases}$$

Решение

$$f(x)=\intop_{-\infty}^{+\infty}c(a)e^{iax}\,da$$, $$c(a)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(t)e^{-iat}\,dt=$$

$$=\frac{1}{2\pi}\left[ \intop_{-\infty}^{0}0e^{-iat}dt+\intop_{0}^{\tau}he^{ia\tau}\,dt+\intop_{\tau}^{+\infty}0e^{-iat}\,dt \right]=$$ $$=\frac{h}{2\pi}\frac{1}{-ia}e^{iat}\mid_0^\tau=$$

$$=-\frac{hi}{2\pi i a i}(e^{-ia\tau}-e^{0})=$$ $$=\frac{hi}{2\pi a}(e^{-ia\tau}-1)$$

$$f(x)=\frac{hi}{2\pi}\int_{-\infty}^{+\infty}\frac{e^{i\tau a}-1}{a}e^{iax}\,da.$$

[свернуть]

Пример 2. Представить интегралом Фурье в комплексной форме функцию $$f(x)=\begin{cases}-e^{-2x},x \geq0,\\2e^{x},x<0 \end{cases}$$

Решение

Построим график функции.

1

 

Пусть функция $f(x)$ удовлетворяет всем условиям интегральной теоремы, а именно кусочно-непрерывна и имеет одну точку разрыва 1-го рода $x_{0}=0$. В точках непрерывности интеграл Фурье в комплексной форме сходится к значениям функции $$f(x)=\intop_{-\infty}^{+\infty}C(a)e^{iax}\,da$$

Определим спектральную функцию по формуле

$$C(a)=\frac{1}{2\pi}\intop_{-\infty}{+\infty}f(t)e^{iat}\,dt=$$

$$=\frac{1}{2\pi}\left(\intop_{-\infty}^{0}2e^{t}e^{t(2-ia)}\,dt -\intop_{0}^{+\infty}e^{-2t}e^{-iat} \right)=$$

$$=\frac{1}{2\pi}\left(2\intop_{-\infty}^{0}e^{t(1-ia)}\,dt-\intop_{0}^{+\infty}e^{-t(2+ia)}\,dt  \right)=$$

$$=\frac{1}{2\pi}\left(\frac{2}{1-ia}e^{t(2-ia)}\mid_{-\infty}^{0}+\frac{1}{2+ia}e^{-t(2+ia)}\mid_{0}^{+\infty}\right)=$$

$$=\frac{1}{2\pi}\left(\frac{2}{1-ia}-\frac{1}{2+ia}\right)=\frac{1}{2\pi}\frac{4+2ia-1+ia}{(1-ia)(2+ia)}=$$

$$==\frac{1}{2\pi}\frac{3+3ia}{(2+a^{2}-ia)}.$$

В точке разрыва $x_{0}=0$ интеграл Фурье сходится к значению $$\frac{f(0-0)+f(0+0)}{2}=\frac{2-1}{2}=\frac{1}{2}.$$

 

[свернуть]

Интегралы в смысле главного значения

Рекомендуется пройти


 

Литература

Дифференцируемость функции в точке и существование частных производных

Дадим определение дифференцируемости функции в точке.
Определение. Функция $f \left( x \right) = f \left( x_1, \dots, x_n \right)$ называется дифференцируемой в точке $x^0 = \left( x_1^0, \dots, x_n^0 \right)$, если она определена в некоторой окрестности этой точки и существуют такие числа $A_1, \dots, A_n$, что $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right) \qquad (2)$$ при $x \to x^0$.
Теорема 1. Функция $f \left( x \right)$ дифференцируема в точке $x^0$ в том и только том случае, когда в некоторой окрестности точки $x^0$ функция $f \left( x \right)$ может быть представлена в следующем виде: $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{i = 1}^{n} f_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (2)$$ где функции $f_i \left( x \right)$ непрерывны в точке $x^0$.

Доказательство

Пусть функция $f \left( x \right)$ дифференцируема в точке $x^0$. Тогда выполнено условие (1). Заметим, что равенство $\psi \left( x \right) = o \left( \rho \left( x, x^0 \right) \right)$ при $x \to x^0$ означает, что $\psi \left( x \right) = \varepsilon \left( x \right) \rho \left( x, x^0 \right)$, где $\lim_{x \to x^0} \varepsilon \left( x \right) = 0$.
Тогда $$\psi \left( x \right) = \frac{ \varepsilon \left( x \right) }{ \rho \left( x, x^0 \right) } \sum\limits_{i = 1}^{n} \left( x_i — x_i^0 \right) ^2 = \\ = \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (3)$$
где $\varepsilon \left( x \right) = \varepsilon \left( x \right) \frac{ x_i — x_i^0 }{ \rho \left( x, x^0 \right) }$, $\lim_{ x \to x^0 } \varepsilon \left( x \right) = 0$, так как $0 \leq \frac{ \left| x_i — x_i^0 \right| }{ \rho \left( x, x^0 \right) } \leq 1$.
Доопределим функции $\varepsilon_i \left( x \right)$ в точке $x^0$ по непрерывности, полагая $\lim_{x \to x^0} \varepsilon_i \left( x \right) = \varepsilon_i \left( x^0 \right) = 0$.
Тогда из (1) и (3) получаем $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{ i = 1 }^{ n } A_i \left( x_i — x_i^0 \right) + \sum\limits_{ i = 1 }^{ n } \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) = \\ = f \left( x^0 \right) + \sum\limits_{ i = 1 }^{ n } f_i \left( x \right) \left( x_i — x_i^0 \right), f_i \left( x \right) = A_i + \varepsilon_i \left( x \right).$$ Так как функции $\varepsilon_i \left( x \right)$ непрерывны в точке $x^0$, то и функции $f_i \left( x \right)$ непрерывны в точке $x^0$ и $f_i \left( x^0 \right) = A_i, i = \overline{1, n}$.
Пусть выполнено (2). Тогда, воспользовавшись непрерывностью функции $f_i \left( x \right)$ в точке $x^0$, положим $$A_i = f_i \left( x^0 \right), f_i \left( x \right) = A_i + \varepsilon_i \left( x \right), \lim\limits_{x \to x^0} \varepsilon_i \left( x \right) = 0.$$ Получаем $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) = \\ = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right),$$ так как $$\frac{ \left| \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) \right| }{ \rho \left( x, x^0 \right) } \leq \sum\limits_{i = 1}^{n} \left| \varepsilon_i \left( x \right) \right| \to 0, x \to x^0. $$

[свернуть]

Упражнение 1. Пусть функции $f \left( x \right)$ и $\varphi \left( x \right)$ определены в окрестности точки $x^0 \in \mathbb{R}^n$, функция $f \left( x \right)$ дифференцируема в точке $x^0$ и $f \left( x^0 \right) = 0$, а функция $\varphi \left( x \right)$ непрерывна в точке $x^0$. Доказать, что функция $f \left( x \right) \varphi \left( x \right)$ дифференцируема в точке $x^0$.
Упражнение 2. Доказать, что функция $$\left( x + y \right) \left( x^3 + y^3 \right) ^{\frac{1}{3}}$$ дифференцируема в точке $\left( 0, 0 \right)$.
Указание. Воспользоваться результатом упр. 1.
Пример 1. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^4}$$дифференцируема в точке $\left( 0, 0 \right)$.
Решение

Покажем, что существует число $C > 0$ такое, что для любых $x \in \mathbb{R}$ и $y \in \mathbb{R}$ справедливо неравенство $$\left| \sqrt[3]{x^3 + y^4} — x \right| \leq C \left| y \right| ^{\frac{4}{3}}. \qquad (4)$$ Если $y = 0$, то неравенство (4) справедливо при любом $C$. Пусть $y \ne 0$. Положим $t = xy^{- \frac{4}{3}}$. Тогда неравенство (4) эквивалентно неравенству $\left| \psi \left( t \right) \right| < C$, где $\psi \left( t \right) = \sqrt[3]{1 + t^3} — t$.
Так как функция $\psi \left( t \right)$ непрерывна на $\mathbb{R}$ и $\psi \left( t \right) \to 0$ при $t \to \infty$, то $\psi \left( x \right)$ есть ограниченная функция на $\mathbb{R}$.
Итак, неравенство (4) установлено. Так как $$\left| \frac{ y^{\frac{4}{3}} }{ \sqrt{ x^2 + y^2 } } \right| = \left| y \right| ^{\frac{1}{3}} \frac{ \left| y \right| }{ \sqrt{x^2 + y^2} } \leq \left| y \right| ^{\frac{1}{3}},$$ то $$y^{\frac{4}{3}} = o \left( \sqrt{x^2 + y^2} \right), \left( x, y \right) \to \left( 0, 0 \right),$$ и, следовательно, $$\sqrt[3]{x^3 + y^4} = x + o \left( \sqrt{x^2 + y^2} \right), \left( x, y \right) \to \left( 0, 0 \right),$$ т. е. функция $f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$ дифференцируема в точке $\left( 0, 0 \right)$.

[свернуть]

Пример 2. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$$недифференцируема в точке $\left( 0, 0 \right)$.
Решение

Первый способ. Пусть функция дифференцируема в точке $\left( 0, 0 \right)$, тогда, согласно определению, существует числа $A$ и $B$ такие, что $$f \left( x, y \right) — f \left( 0, 0 \right) = Ax + By + o \left( \rho \right), \rho = \sqrt{x^2 + y^2},$$ где $f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$, $f \left( 0, 0 \right) = 0$, $A = \frac{ \partial f \left( 0 , 0 \right) }{ \partial x }$, $B = \frac{ \partial f \left( 0, 0 \right) }{ \partial y } = 1$.
Поэтому $$\sqrt[3]{x^3 + y^3} = x + y + o \left( \sqrt{x^2 + y^2} \right).$$ Пусть $x = y > 0$, тогда $$\sqrt[3]{2x} = 2x + 0 \left( x \right)$$ или $\left( \sqrt[3]{2} — 2 \right) x = o \left( x \right)$ при $x \to 0$, что противоречит определению символа $o \left( x \right)$. Следовательно, функция $\sqrt[3]{x^3 + y^3}$ недифференцируема в точке $\left( 0, 0 \right)$.
Второй способ. Если функция $f \left( x, y \right)$ дифференцируема в точке $\left( 0, 0 \right)$, то ее можно в некоторой окрестности этой точки, согласно теореме 1, представить в следующем виде: $$\sqrt[3]{x^3 + y^3} = x \varphi \left( x, y \right) + y \psi \left( x, y \right), \qquad (5)$$где функции $\varphi \left( x, y \right)$ и $\psi \left( x, y \right)$ непрерывны в точке $\left( 0, 0 \right)$.
Пусть $k$ — произвольное число. Положим в (5) $y = kx$. Тогда $$\sqrt[3]{1 + k^3} = \varphi \left( x, kx \right) + k \psi \left( x, kx \right).$$ Переходя к пределу при $x \to 0$ и пользуясь непрерывностью функции $\varphi \left( x, y \right)$ и $\psi \left( x, y \right)$ в точке $\left( 0, 0 \right)$, получаем, что при любом $k$ выполняется равенство $$\sqrt[3]{1 + k^3} + \varphi \left( 0, 0 \right) + k\psi \left( 0, 0 \right) = a + kb.$$
Это неверно, так как функция $\sqrt[3]{1 + k^3}$ не есть линейная функция (ее вторая производная по $k$ не обращается тождественно в нуль).

[свернуть]

Из теоремы 1 следует, что функция $f \left( x \right)$, дифференцируемая в точке $x^0$, непрерывна в этой точке. Обратное утверждение неверно: функция примера 2 непрерывна, но недифференцируема в точке $\left( 0, 0 \right)$.

Необходимое условие дифференцируемости функции в точке.

Теорема 2. Если функция $f \left( x \right)$ дифференцируема в точке $x^0 \in \mathbb{R}^n$, то она имеет в точке $x^0$ все частные производные $\frac{ \partial f }{ \partial x_i } \left( x^0 \right)$, $i = \overline{1, n}$, и $$f \left( x \right) — f \left( x^0 \right) = \\ = \sum\limits_{i = 1}^{n} \frac{ \partial f }{ \partial x_i } \left( x^0 \right) \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right), x \to x^0. \qquad (6)$$

Доказательство

Пусть функция $ f \left( x \right)$ дифференцируема в точке $x^0$. Тогда найдутся такие числа $A_1, \dots, A_n$, что при $x \to x_1^0$ будет выполнено равенство (1). Пусть в этом равенстве $x_1 \neq x_1^0$, а $x_2 = x_2^0, \dots, x_n = x_n^0$. Тогда равенство (1) принимает следующий вид: $$f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0, \dots, x_n^0 \right) = \\ = A_1 \left( x_1 — x_1^0 \right) + o \left( \left| \Delta x_1 \right| \right), x_1 — x_1^0 = \Delta x_1 \to 0.$$ Следовательно, существует предел: $$A_1 = \lim\limits_{\Delta x_1 \to 0} \frac{ f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0 , \dots, x_n^0 \right) }{ \Delta x_1 } = \frac{ \partial f }{ \partial x_1 } \left( x^0 \right).$$ Аналогично доказывается, что у функции $f \left( x \right)$ в точке $x^0$ существуют и остальные частные производные и что $$A_i = \frac{ \partial f }{ \partial x_i } \left( x^0 \right), i = \overline{ 2, n }.$$ Подставляя эти выражения в равенство (1), получаем (6).

[свернуть]

Функция примера 2 имеет в точке $\left( 0, 0 \right)$ обе частные производные первого порядка: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = \\ = \lim\limits_{x \to 0} \frac{ \sqrt[3]{x^3} }{ x } = 1, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 1.$$ Так как функция $f \left( x, y \right) = sqrt[3]{x^3 + y^3}$ примера 2 недиффиринцируема в точке $\left( 0, 0 \right)$, то этот пример показывает, что из существования частных производных в точке не следует дифференцируемость функции в этой точке. Существование частных производных функции в точке не гарантирует даже непрерывности функции в этой точке.
Так, функция $$f \left( x \right) = \begin{cases} \frac{2xy}{x^2+y^2}, & x^2 + y^2 > 0, \\ 0, & x = y = 0 \end{cases}$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$, а поэтому и не является непрерывной в точке $\left( 0, 0 \right)$. Тем не менее у этой функции в точке $\left( 0, 0 \right)$ существуют обе частные производные: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = 0, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 0.$$

Достаточные условия дифференцируемости функции в точке.

Теорема 3. Если все частные производные $\frac{ \partial f }{ \partial x_i }$, $i = \overline{1, n}$ определены в окрестности точки $x^0 \in \mathbb{R}^n$ и непрерывны в точке $x^0$, то функция $f \left( x \right)$ дифференцируема в точке $x^0$.

Доказательство

Рассмотрим случай функции трех переменных. Общий случай рассматривается аналогично. Пусть функции $\frac{ \partial f }{ \partial x } \left( x, y, z \right)$, $\frac{ \partial f }{ \partial y } \left( x, y, z \right)$, $\frac{ \partial f }{ \partial z } \left( x, y, z \right)$ определены в некотором шаре $S_\varepsilon \left( x^0, y^0, z^0 \right)$ и непрерывны в центре шара $\left( x^0, y^0, z^0 \right)$.
Запишем приращения функции в следующем виде: $$f \left( x, y, z \right) — f \left( x^0, y^0, z^0 \right) = \\ = f \left( x, y, z \right) — f \left( x^0, y, z \right) + f \left( x^0, y, z \right) — f \left( x^0, y^0, z \right) + \\ + f \left( x^0, y^0, z \right) — f \left( x^0, y^0, z^0 \right).$$ Пусть $x^0 < x$. Рассмотрим функцию одной переменной $\psi \left( t \right)$ при $t \in \left[ x^0, x \right]$. На этом отрезке функция $\psi \left( t \right)$ имеет производную $$\psi ‘ \left( t \right) = \frac{ \partial f }{ \partial x } \left( t, y, z \right).$$ Применяя формулу конечных приращений Лагранжа для функции $\psi \left( t \right)$ на отрезке $\left[ x^0, x \right]$, получаем $$\psi \left( x \right) — \psi \left( x^0 \right) = \psi ‘ \left( x^0 + \theta \left( x — x^0 \right) \right) \left( x — x^0 \right), 0 < \theta < 1.$$ Если подставить в эту формулу выражение для $\psi \left( t \right)$, то $$f \left( x, y, z \right) — f \left( x^0, y, z \right) = f_1 \left( x, y, z \right) \left( x — x^0 \right), \\ f_1 \left( x, y, z \right) = \frac{ \partial f }{ \partial x } \left( x^0 + \theta \left( x — x^0 \right), y, z \right). \qquad (7)$$ Так как частная производная $\frac{ \partial f }{ \partial x } \left( x, y, z \right)$ непрерывна в точке $\left( x^0, y^0, z^0 \right)$, то существует $$\lim\limits_{ \left( x, y, z \right) \to \left( x^0, y^0, z^0 \right) } f_1 \left( x, y, z \right) = \frac{ \partial f }{ \partial x } \left( x^0, y^0, z^0 \right).$$ Аналогично,$$f \left( x^0, y, z \right) — f \left( x^0, y^0, z \right) = f_2 \left( , y, z \right) \left( y — y^0 \right), \\ f \left( x^0, y^0, z \right) — f \left( x^0, y^0, z^0 \right) = f_3 \left( , y, z \right) \left( z — z^0 \right), \qquad (8)$$ где функции $f_2 \left( x, y, z \right)$ и $f_3 \left( x, y, z \right)$ имеют конечные пределы при $\left( x, y, z \right) \to \left( x^0, y^0, z^0 \right)$. Доопределяя эти функции в точке $\left( x^0, y^0, z^0 \right)$предельным значениями, получим, что функции $f_i \left( x, y, z \right)$, $i = \overline{1, 3}$, непрерывны в точке $\left( x^0, y^0, z^0 \right)$. Таким образом, $$f \left( x, y, z \right) — f \left( x^0, y^0, z^0 \right) = \\ = \left( x — x^0 \right) f_1 \left( x, y, z \right) + \left( y — y^0 \right) f_2 \left( x, y, z \right) + \left( z, z_0 \right) f_3 \left( x, y, z \right).$$ Из непрерывности функций $f_1 \left( x, y, z \right)$, $f_2 \left( x, y, z \right)$ и $f_3 \left( x, y, z \right)$ в точке $ \left( x^0, y^0, z^0 \right)$ и теоремы 1 следует дифференцируемость функции $f \left( x, y, z \right)$ в точке $\left( x^0, y^0, z^0 \right)$.

[свернуть]

Непрерывность частных производных в точке не является необходимым условием дифференцируемости функции в этой точке.
Функция $$f \left( x, y \right) = \begin{cases} \left( x^2 + y^2 \right) \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } }, & x^2 + y^2 > 0, \\ 0, & x = y = 0, \end{cases}$$ дифференцируема в точке $\left( 0, 0 \right)$, так как $$f \left( x, y \right) = 0 \cdot x + 0 \cdot y + o \left( \sqrt{ x^2 + y^2 } \right), \left( x, y \right) \to \left( 0, 0 \right).$$ Но при $x^2 + y^2 > 0$ частная производная$$\frac{ \partial f }{ \partial x } \left( x, y \right) = 2x \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } } — \frac{ x }{ \sqrt{ x^2 + y^2 } } \cos \frac{ 1 }{ x^2 + y^2 }$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$ и, следовательно, не является непрерывной функцией в точке $\left( 0, 0 \right)$. Чтобы в этом убедиться, достаточно показать, что $\frac{ \partial f \left( x, 0 \right) }{ \partial x }$ не имеет предела при $x \to 0$.

Список литературы

Тест

Тест для проверки усвоения материала

Определение криволинейных интегралов второго рода и их свойства. Физический смысл

Пусть в область $\Omega\subset {\mathbb{R}}^{n}$ задано векторное поле, то есть каждой точке из $\Omega$ поставлен в соответствии вектор из ${\mathbb{R}}^{n}$. Это можно записать следующим образом,

$$F(x)=({\varphi}_{1}({x}_{1},…,{x}_{n}),…, {\varphi}_{n}({x}_{1},…,{x}_{n})),$$
где $F$ — векторное поле и $F(x)\in {\mathbb{R}}^{n}$.

Если функции ${\varphi }_{i}$ $(i=1,…,n)$ непрерывные и непрерывно дифференцируемы в области, то поле $F$ также непрерывно и непрерывно дифференцировано в области $\Omega$.

Определение

Если в области $\Omega\subset {\mathbb{R}}^{n}$ задано непрерывное векторное поле $F=({\varphi}_{1},…,{\varphi}_{n})$, а $r=r(t)$ $(\alpha\leq t\leq\beta)$ — уравнение кусочно гладкой кривой $\Gamma$, которая лежит в области $\Omega$, то интеграл:

$$\int\limits_{\Gamma}^{}(F,\,dr)\equiv\int\limits_{\alpha}^{\beta}(F({x}_{1}(t),…,{x}_{n}(t)), r^\prime(t))\,dt\equiv$$ $$\equiv\int\limits_{\alpha}^{\beta}(({\varphi}_{1}({x}_{1}(t),…,{x}_{n}(t)),…,{\varphi}_{n}({x}_{1}(t),…,{x}_{n}(t))), r^\prime(t))\,dt\equiv$$ $$\equiv\int\limits_{\alpha}^{\beta}[{\varphi}_{1}({x}_{1}(t),…,{x}_{n}(t)){x^\prime}_{1}(t)+…+{\varphi}_{n}({x}_{1}(t),…,{x}_{n}(t)){x^\prime}_{n}(t)]\,dt.$$

называется криволинейным интегралом II рода от векторного поля $F$ вдоль кривой $\Gamma$.

Рассмотрим также частный случай когда $\Omega\subset {\mathbb{R}}^{3}$. В этом случае можно обозначить $F=(P(x,y,z),Q(x,y,z),R(x,y,z))$, где $\Gamma: r=r(t)=(x(t),y(t),z(t))$ $(\alpha \leq t\leq \beta)$. Тогда интеграл имеет следующий вид:
$$\int\limits_{\Gamma}^{}(F,\,dr) =\int\limits_{\Gamma}^{}P(x,y,z)\,dx+Q(x,y,z)\,dy+R(x,y,z)\,dz=$$ $$=\int\limits_{\alpha}^{\beta}[P(x(t),y(t),z(t))x^\prime(t) +Q(x(t),y(t),z(t))y^\prime(t)+$$ $$+R(x(t),y(t),z(t))z^\prime(t)]\,dt.$$

Свойства криволинейных интегралов II рода:

Рассматривать свойства будем для области $\Omega\subset {\mathbb{R}}^{3}$, так как для $\Omega\subset {\mathbb{R}}^{n}$ $(n\geq 3)$ изменения очевидны.

  1. Криволинейный интеграл II рода не зависит от способа параметризации кривой

    [spoilergroup]

    Доказательство

    Пусть $\Gamma: r=r(t)=(x(t),y(t),z(t))$ $(\alpha\leq t\leq\beta)$ и $\Gamma: \rho=\rho(\tau)$ $(a\leq\tau\leq b)$, то $t=t(\tau), t(a)=\alpha, t(b)=\beta$ и $t$ — кусочно гладкая непрерывно дифференцируемая функция переменной $\tau$. Тогда:

    $$\int\limits_{\Gamma}^{}(F,\,dr)=\int\limits_{\alpha}^{\beta}[P(x(t),y(t),z(t))x^\prime(t)+$$ $$+Q(x(t),y(t),z(t))y^\prime(t)+$$ $$+R(x(t),y(t),z(t))z^\prime(t)]\,dt=$$ $$=\int\limits_{a}^{b}[P(x(t(\tau)),y(t(\tau)),z(t(\tau)))x^\prime(t(\tau))+$$ $$+Q(x(t(\tau)),y(t(\tau)),z(t(\tau)))y^\prime(t(\tau))+$$ $$+R(x(t(\tau)),y(t(\tau)),z(t(\tau)))\cdot z^\prime(t(\tau))]\,d\tau=$$ $$=\int\limits_{a}^{b}[P(\tilde{x}(\tau),\tilde{y}(\tau),\tilde{z}(\tau))\tilde{x}^\prime(\tau)+$$ $$+Q(\tilde{x}(\tau),\tilde{y}(\tau),\tilde{z}(\tau))\tilde{y}^\prime(\tau)+$$ $$+R(\tilde{x}(\tau),\tilde{y}(\tau),\tilde{z}(\tau))\tilde{z}^\prime(\tau)]\,d\tau=$$ $$=\int\limits_{\Gamma}^{}(F,\,d\rho),$$

    где $r(t)=(x(t),y(t),z(t))$ $(\alpha\leq t\leq\beta)$, $\rho(\tau)=(\tilde{x}(\tau),\tilde{y}(\tau),\tilde{z}(\tau))$ $(a\leq\tau\leq b)$.

    [свернуть]

    [/spoilergroup]

    Замечание.

    Это доказательство имеет место только в том случае, когда $r=r(t)$ и $\rho=\rho(\tau)$ определяют одну и ту же кривую $\Gamma$ и имеют одну и ту же ориентацию.

  2. Криволинейный интеграл II рода при изменении ориентации кривой на противоположную меняет знак

    $$\int\limits_{\Gamma}^{}(F,\,dr)=-\int\limits_{{\Gamma}^{-}}^{}(F,\,dr).$$
    [spoilergroup]

    Доказательство

    Пусть $\Gamma: r=r(t)$ $(\alpha\leq t\leq\beta)$ и ${\Gamma}^{-}: \rho=r(\alpha+\beta-t)$ $(\alpha\leq t\leq\beta)$. Тогда $\rho^\prime(t)=-r^\prime(\alpha+\beta-t)$. Отсюда получаем:

    $$\int\limits_{{\Gamma}^{-}}^{}(F,\,dr)=\int\limits_{\alpha}^{\beta}(F(\rho(t)),\rho^\prime(t))\,dt=$$ $$=-\int\limits_{\alpha}^{\beta}(F(r(\alpha+\beta-t)),r^\prime(\alpha+\beta-t))\,dt =$$ $$=-\int\limits_{\alpha}^{\beta}(F(r(\tau)),r^\prime(\tau))\,d\tau=-\int\limits_{\Gamma}^{}(F,\,dr).$$

    [свернуть]

    [/spoilergroup]
  3. Криволинейный интеграл II рода аддитивен относительно кривой

    Если $\Gamma=({\Gamma}_{1},…,{\Gamma}_{N})$, то:

    $$\int\limits_{\Gamma}^{}(F,\,dr)=\sum_{i=1}^{N}\int\limits_{{\Gamma}_{i}}^{}(F,\,dr).$$

    Доказательство

    Следует из определения и свойства аддитивности определенного интеграла относительно области интегрирования

Физический смысл

Работа силы

Пусть $F(x,y,z)$ — силовое поле в области $\Omega\subset {\mathbb{R}}^{3}$ и пусть кусочно гладкая кривая ${\Gamma}_{AB}\subset\Omega$ задана уравнением $r=r(t)$, $\alpha\leq t\leq\beta$. Если интерпретировать это уравнение, как закон движения материальной точки, то при таком движении сила, действующая на материальную точку, должна совершать работу. В том случае когда материальная точка движется в постоянном силовом поле с постоянной скоростью по прямой, параллельной вектору $l$, $|l|=1$, работа силы равна $(F,l)\Delta s$, где $\Delta s$ — пройденный путь.

curve3

Изображение вектора силы в случае движения точки по произвольной кусочно гладкой кривой

Теперь рассмотрим случай, когда поле силы непостоянно и точка движется в силовом поле по произвольной кусочно гладкой кривой ${\Gamma}_{AB}\subset\Omega:r=r(t)$, $(\alpha\leq t\leq\beta)$. Пусть $T$ — произвольное разбиение отрезка $[\alpha,\beta]$ точками $\alpha={t}_{0}<{t}_{1}<…<{t}_{n}=\beta$ и ему соответствует разбиение кривой ${\Gamma}_{AB}$ точками $A={A}_{0}\prec{A}_{1}\prec…\prec{A}_{n}=B$.

При движении по дуге ${\Gamma}_{{A}_{i-1}{A}_{i}}$ заменим силу $F$ постоянной силой $F(x({t}_{i}),y({t}_{i}),z({t}_{i}))$, а само движение по этой дуге заменим движением по касательной с постоянной скоростью $r^\prime({t}_{i})$. Тогда работа силы приближенно равна $(F(x({t}_{i}),y({t}_{i}),z({t}_{i})),r^\prime({t}_{i})\Delta{t}_{i})$.

Работа силы при движении материальной точки по кривой ${\Gamma}_{AB}$ приближенно равна следующей сумме:

$${\mathcal{A}}_{T}=\sum_{i=1}^{n}(F(x({t}_{i}),y({t}_{i}),z({t}_{i})),r^\prime({t}_{i}))\Delta{t}_{i},$$

где $\Delta{t}_{i}={t}_{i}-{t}_{i-1}$.

Предел суммы ${\mathcal{A}}_{T}$ при мелкости разбиения $l(T)$, стремящейся к нулю, естественно назвать работой силы $F$ при движении точки по кривой ${\Gamma}_{AB}$. Таким образом, работа силы:

$$\mathcal{A}=\lim_{l(T)\to 0}\sum_{i=1}^{n}(F(x({t}_{i}),y({t}_{i}),z({t}_{i})),r^\prime({t}_{i}))\Delta{t}_{i}=$$ $$=\int\limits_{\alpha}^{\beta}(F(x(t),y(t),z(t)),r^\prime(t))\,dt=\int\limits_{{\Gamma}_{AB}}^{}(F,\,dr).$$

Криволинейные интегралы второго рода

Чтобы убедиться в том что вы усвоили данный материал советую пройти этот тест.


Таблица лучших: Криволинейные интегралы второго рода

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных