9.2.1 Открытые множества

Определение. Открытым шаром с центром в точке $x_0$ и радиусом $\rho >0$ называется множество всех точек $x\in \mathbb{R}^n,$ таких, что $|x-x_0|<\rho.$ Этот шар обозначается $B(x_0,\rho)$ и называется также $\rho$-окрестностью точки $x_0.$

Определение. Пусть задано множество $E \subset \mathbb{R}^n.$ Точка $x_0 \in E$ называется внутренней точкой множества $E,$ если существует шар $B(x_0,\rho),$ содержащийся в $E.$ Другими словами, точка $x_0$ называется внутренней точкой множества $E,$ если она входит во множество $E$ вместе с некоторой окрестностью.

Определение. Множество $E$ называется открытым, если все его точки являются внутренними точками этого множества. Условимся также считать пустое множество $\emptyset$ открытым.

Пример 1. Каждый открытый шар $B(x_0,r)$ является открытым множеством.

Действительно, пусть $x \in B(x_0,r).$ Нужно доказать, что существует такая окрестность точки $x,$ которая целиком содержится в шаре $B(x_0,r).$ Положим $\rho = r-|x-x_0|.$ Тогда $\rho > 0,$ так как $|x-x_0|<r.$ Покажем, что $B(x,\rho) \subset B(x_0,r).$ Пусть $y \in B(x,Ѕ).$ Тогда $|y-x|<\rho.$ Оценим расстояние между точками $y$ и $x_0.$ По неравенству треугольника имеем $$|y-x_0|\leqslant|y-x|+|x-x_0|<\rho + |x-x_0|=r$$ что и требовалось доказать.

В частности, при $n = 1$ открытые шары — это интервалы на действительной прямой, и они являются открытыми множествами на прямой.

Пример 2. Рассмотрим открытые $n$-мерные интервалы. Для двух заданных векторов $a,b \in \mathbb{R}^n,$ таких, что $a^i < b^i (i=1,…,n),$ открытым интервалом называется множество всех точек $x,$ координаты которых удовлетворяют условиям $a^i < x^i < b^i (i=1,…,n).$ Такой интервал обозначается через $(a^1,b^1,…,a^n,b^n).$

В частности, в $\mathbb{R}^2$ открытые интервалы — это прямоугольники со сторонами, параллельными координатным осям, а в $\mathbb{R}^3$ — параллелепипеды, ребра которых параллельны координатным осям.

Докажем, что любой открытый интервал в $\mathbb{R}^n$ является открытым множеством.

Пусть $J$ — открытый интервал и пусть $x \in J,$ т. е. $a^i < x^i < b^i (i=1,…,n).$ Обозначим через $\delta^i = min(x^i — a^i,b^i-x^i)(i=1,…,n)$ и $\delta=min(\delta^1,…,\delta^n).$ Покажем, что шар $B(x,\delta)$ содержится в $J.$ Действительно, если $y \in B(x,\delta),$ то $|y-x|<\delta.$ Отсюда следует, что $|x^i-y^i|<\delta$ для всех $i=1,…,n.$ Пользуясь определением числа $\delta,$ видим, что $a^i < y^i < b^i$ для всех $i=1,…,n,$ так что $y \in J,$ что и требовалось доказать.

Пример 3. Множество $S$ всех точек на действительной прямой — открытое.

Рассмотрим некую точку $x,$ которая находится на расстоянии $\rho$ от точки $x_0 = (0),$ затем рассмотрим шар $B(x,\eps).$ Каждая точка, принадлежащая этому шару, также, очевидно, принадлежит всей действительной прямой, т.е. $\forall y \in B(x,\eps): y \in S,$ что означает что любая точка входит в множество $S$ вместе с некоторым шаром, а по определению это значит, что $S$ — открытое множество

Свойства открытых множеств.

Пусть $\mathcal{A}$ — множество индексов, и каждому элементу $\alpha \in \mathcal{A}$ поставлено в соответствие некоторое множество $E_{\alpha}.$ Тогда говорят, что задано семейство множеств $\{E_{\alpha}\}_{\alpha \in \mathcal{A}}.$

Теорема. Система всех открытых множеств в $\mathbb{R}^n$ обладает следующими свойствами:

  1. все пространство $\mathbb{R}^n$ и пустое множество $\emptyset$ открыты;
  2. пересечение любого конечного числа открытых множеств открыто;
  3. объединение любого семейства $\{G_{\alpha}\}_{\alpha \in \mathcal{A}}$ открытых множеств открыто.
  1. Пустое множество $\emptyset$ открыто по определению, а всё пространство $\mathbb{R}^n,$ очевидно, открыто, поскольку любой шар содержится в $\mathbb{R}^n.$
  2. Пусть $G_1,…,G_s$ — открытые множества, $G = \bigcap\limits_{i=1}^s G_i.$ Пусть $x \in G.$ Тогда $x \in G_i$ для всех $i=1,…,s.$ Но каждое из множеств $G_i$ открыто, так что для каждого $i=1,…,s$ найдется шар $B(x,r_i) \subset G_i.$ Среди всех этих шаров выберем шар с наименьшим радиусом $B(x,r),$ где $r = min(r_1,…,r_s).$ Тогда $B(x, r) \subset G_i$ при каждом $i=1,…,s,$ а значит, $B(x,r) \subset G,$ и тем самым доказано, что множество $G$ открыто.
  3. Пусть $G = \bigcup\limits_{\alpha \in \mathcal{A}} G_{\alpha},$ где каждое множество $G_{\alpha}$ открыто. Докажем, что и множество $G$ также открыто. Действительно, пусть $x \in G.$ Тогда $x$ принадлежит по крайней мере одному из множеств $G_{\alpha_0}.$ Так как это множество $G_{\alpha_0}$ открыто, то найдется окрестность $B(x,\rho) \subset G_{\alpha_0} \subset G.$ Таким образом, $G$ — открытое множество.

Замечание. Пересечение бесконечного набора открытых множеств не обязано быть открытым множеством. Например, пусть $B_k$ — открытый шар с центром в нуле и радиусом $\frac{1}{k} (k = 1,2,…).$ Тогда $\bigcap\limits^{\infty}_{k=1} B_k = \{0\}.$ Но множество $\{0\},$ состоящее из одной точки, не является открытым, поскольку оно не содержит в себе ни одного шара.

Определение. Пусть $E$ — непустое множество в $\mathbb{R}^n.$ Тогда совокупность всех его внутренних точек называется внутренностью множества $E$ и обозначается через $\mathring{E}$ или $\text{int} E.$

Теорема. Для любого непустого множества $E$ его внутренность — открытое множество.

Будем предполагать, что $\mathring{E}$ не пусто. Пусть $x \in \mathring{E}.$ Тогда $x$ — внутренняя точка множества $E$ (по определению внутренности). Нужно доказать, что $x$ является также внутренней точкой множества $\mathring{E}.$ Итак, найдется шар $B(x,\rho) \subset E.$ Но поскольку шар — открытое множество, то каждая точка $y \in B(x,\rho)$ содержится в этом шаре вместе с некоторой окрестностью $U_y.$ Значит $U_y \subset E,$ и поэтому $y$ — внутренняя точка множества $E,$ т.е. $y \in \mathring{E}.$ Таким образом, мы получили, что $B(x,\rho) \subset \mathring{E},$ а это означает, что $\mathring{E}$ — открытое множество, и теорема доказана.

Пример 4. Рассмотрим область определения функции $f(x) = \frac{1}{x}.$ $D(f) = (-\infty;0)\cup(0;\infty),$ значит $D(f)$ можно представить в виде объединения двух интервалов $D(f) = A_1 \cup A_2,$ где $A_1 = (-\infty;0); A_2 = (0;\infty),$ то есть в виде объединения двух открытых множеств, так как интервалы — открытые множества по доказанному ранее. А значит, по свойству открытых множеств, множество $D(f)$ — открытое множество.

Пример 5. Рассмотрим область определения функции $f(x) = \sqrt{3x}.$ $D(f)=\{x \in \mathbb{R} | x \geqslant 0\}.$ Это множество не является открытым, докажем это. Рассмотрим точку $x=0.$ $x \in D(f),$ однако не существует такого открытого шара $B(x,\rho),$ который полностью бы лежал в $D(f),$ так как в этом шаре будет присутствовать точка $y,$ такая что $x-\rho < y < x = 0.$ Из этого следует, что $y < 0$ и $y$ не принадлежит $D(f).$ Значит $D(f)$ не является открытым множеством.

9.2.1. Открытые множества

Для закрепления материала предложен тест по теме «Открытые множества».

10. Последовательности точек в конечномерных пространствах

Последовательности точек в $R^{n}$

Если каждому натуральному числу ν поставлена в соответствие точка $x_{v}\in R^{n},$ то говорят, что задана последовательность {$x_{ν}$} точек из $R^{n}.$

Определение.Точка $x$ называется пределом последовательности точек $x_{ν} (ν=1,2,\ldots),$ если для любого $\displaystyle\eps > 0$ существует такое $N$, что для всех $ν \geqslant N$ справедливо неравенство $\displaystyle|x_{ν} − x| < \eps.$

Эквивалентное геометрическое определение может быть сформулировано следующим образом.

Определение. Точка $x$ называется пределом последовательности точек $x_{ν}(ν = 1, 2,\ldots),$ если в любой окрестности точки $x$ содержатся все члены последовательности, за исключением, быть может, конечного их числа, т. е. какой бы шар с центром в точке $x$ мы ни взяли, в него попадут все точки $x_{ν}$, кроме, быть может, конечного их числа. Предел $x$ последовательности {$x_{ν}$} обозначают, как обычно,

$$\lim_{v\to+\infty}x_{v}$$

Теорема. (единственность предела)
Если последовательность имеет предел, то он единственный.

Действительно, если у последовательности {$x_{ν}$} есть два предела $x^{\prime},x^{\prime\prime}$ и $x^{\prime\prime}\neq x^{\prime},$ то построим непересекающиеся окрестности $V^{\prime}$ $V^{\prime\prime}$ точек $x^{\prime}$ и $x^{\prime\prime}$, соответственно (для этого достаточно взять шары с центрами в точках $x^{\prime}$ и $x^{\prime\prime},$ радиусы которых равны половине расстояния между точками $x^{\prime}$ и $x^{\prime\prime}$). Поскольку $x^{\prime} = \displaystyle\lim_{v\to+\infty}x_{v},$ то в окрестности $V^{\prime}$ содержатся все элементы последовательности, начиная с некоторого номера. Аналогично, поскольку $x^{\prime\prime} \displaystyle\lim_{v\to+\infty}x_{v} ,$ то в окрестность $V^{\prime\prime}$ попадают все элементы последовательности {$x_{ν}$}, начиная с некоторого номера. Но это невозможно, поскольку окрестности $V^{\prime}$ и $V^{\prime\prime}$ не пересекаются.

Последовательность {$x_{ν}$} называется ограниченной, если ограничено множество значений этой последовательности.
Равносильное определение: последовательность {$x_{ν}$} называется ограниченной, если существует такое число $M$, что $|x_{ν}| \leqslant M (ν = 1, 2\ldots).$
С геометрической точки зрения это означает, что существует шар с центром в нуле, содержащий все элементы последовательности.
Очевидно также, что последовательность ограничена тогда, и только
тогда, когда все ее элементы содержатся в некотором шаре (не обязательно с центром в нуле).

Теорема (ограниченность сходящейся последовательности).Если последовательность имеет предел, то она ограничена.

Действительно, пусть $x =\displaystyle \lim_{v\to+\infty}x_{v}$. Обозначим через $V$ шар единичного радиуса с центром в точке $x$. По определению предела, в этом шаре находятся все элементы последовательности, начиная с некоторого номера $N$. Вне $V$ находится разве что конечное число элементов $x_{ν}$. Положим $$\rho = max\left\{1, |x_{1} − x|,\ldots,|x_{N−1} − x|\right\}$$ и получим, что в $\bar{B}\left(x,\rho\right)$ находятся все $x_{ν} (ν=1,2,\ldots),$ т. е. последовательность $\left\{x_{ν}\right\}$ ограничена.

Рассмотрим последовательность$\displaystyle\left(\left(-1\right)^{v},\frac{1}{v},\frac{1}{2^{v}}\right)\left(ν = 1, 2,\ldots\right)$ точек в пространстве $R^{3}.$ Эта последовательность предела не имеет, поскольку не имеет предела числовая последовательность, составленная из первых координат данной последовательности. Легко видеть, что эта последовательность ограничена. Действительно, имеем $|x_{ν}|\leqslant \sqrt{3}.$ Последовательность $\displaystyle y_{ν} = \left(\frac{v+1}{v},\frac{1}{v},\frac{2v-1}{v+3}\right)\left(ν = 1, 2,\ldots\right)$ точек из $R^3,$ очевидно, имеет пределом точку $y = (1, 0, 2).$

Теорема. Для того чтобы последовательность точек $x_{ν}\in R^{n}$сходилась к точке $x \in R^{n}$, необходимо и достаточно, чтобы при каждом $i = 1,\ldots, n$ числовая последовательность $\left\{x^{i}_{v}\right\}^{+\infty}_{i=1},$ составленная из $i$-х координат точек $x_{ν}$, сходилась к $i$-й координате $x^{i}$ точки $x.$

Необходимость. Пусть $x_{ν}\to x$ Тогда из неравенства $|x^{i}_{v} — x^{i}|\leqslant|x_{v}-x|(i = 1,\ldots, n)$, которое следует из определения длины, получаем, что стремление к нулю правой части влечет стремление к нулю левой части при любом $i.$
Достаточность. Воспользуемся неравенством $\displaystyle|x_{ν} − x| =\sqrt{\sum_{i=1}^{n}\left(x^{i}_{v}-x^{i}\right)^{2}}\leqslant\sum_{i=1}^{n}|x^{i}_{v}-x^{i}|.$ Поскольку при каждом $i = 1,\ldots, n$ имеем $\displaystyle\lim_{v\to+\infty}x_{v}^{i}=x^{i},$ то для любого $i$ найдется такое $N_{i},$ что при каждом $ν \geqslant N_{i},$справедливо $\displaystyle|x^{i}_{ν} − x^{i}|<\frac{\eps}{n}.$Если положим $N = max\left(N_{1},\ldots, N_{n}\right)$, то для любого $ν \geqslant N$ получим $|x_{ν} − x|<\eps,$ т.е. $\displaystyle\lim_{v\to+\infty}x_{v}^{i}=x.$

Теорема (арифметические свойства пределов). Пусть $\left\{x_{ν}\right\},\left\{y_{ν}\right\}$ – две последовательности точек из $R^{n}$ такие, что $\displaystyle\lim_{v\to+\infty}x_{v}=x ,\displaystyle\lim_{v\to+\infty}y_{v}=y$ и $\left\{α_ν\right\}$ – последовательность действительных чисел, такая, что $\displaystyle\lim_{v\to+\infty}\alpha_{v} = \alpha.$ Тогда

  1. $\displaystyle\lim_{v\to+\infty}\left(x_{v}+y_{v}\right) = x + y$
  2. $\displaystyle\lim_{v\to+\infty}\alpha_{v}x_{v} = \alpha x$
  3. $\displaystyle\lim_{v\to+\infty}\left(x_{v}\cdot y_{v}\right) = x \cdot y$
  4. $\displaystyle\lim_{v\to+\infty}|x_{v}| = |x|$
  1. Очевидно
  2. Поскольку последовательность $\left\{x_{ν}\right\}$ сходится, то она ограничена. Пусть $|x_{ν}|\leqslant M.$ Тогда, в силу неравенства треугольника, имеем
    $|\alpha_{ν}x_{ν} − \alpha x| \leqslant |\alpha_{ν}x_{ν} − \alpha x_{ν}| + |\alpha x_{ν} − \alpha x|=$$=|\alpha ν − \alpha||x_{ν}| + |\alpha||x_{ν} − x| \leqslant M|\alpha_{ν} − \alpha| + |\alpha||x_{ν} − x|.$ Отсюда следует 2.
  3. Пользуясь неравенством Коши и неравенством треугольника, ограниченностью последовательности ${y_{ν}}$ (т. е. $|y_{ν}| \leqslant M$) и свойствами скалярного произведения, получаем
    $|x_{ν} \cdot y_{ν} − x \cdot y|\leqslant $$|x_{ν} \cdot y_{ν} − x \cdot y_{ν}| + |x \cdot y_{ν} − x \cdot y| =$$
    = |(x_{ν}−x)\cdot y_{ν}|+|x\cdot\left(y_{ν}−y\right)| \cdot |x_{ν}−x||y_{ν}|+|x||y_{ν}−y| \leqslant $$M|x_{ν}−x|+|x||y_{ν}−y|.$
    Отсюда, очевидно, следует 3.
  4. Для доказательства 4. достаточно показать, что
    $||x_{ν}| − |x|| \leqslant |x_{ν} − x|.$
    Это неравенство, в свою очередь, вытекает из следующих двух очевидных неравенств:$|x_{ν}| \leqslant |x| + |x_{ν} − x|, |x| \leqslant |x_{ν}| + |x − x_{ν}|.$

Определение.Последовательность $\left\{x_{ν}\right\}$ называется фундаментальной, или последовательностью Коши, если для каждого $\eps > 0$ найдется такой номер $N$, что для любых двух номеров $ν, \mu \geqslant N$ справедливо неравенство $|x_{ν} − x_{\mu}| < \eps.$

Теорема. (критерий Коши).Для того чтобы последовательность $\left\{x_{ν}\right\}$ точек в $R^{n}$ была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.

Необходимость. Пусть $\displaystyle
\lim_{ν\to+\infty}x_{ν} = x.$ Зададим $\eps > 0$ и найдем такой номер $N,$ что для всех $ν \geqslant N$ справедливо неравенство $|x_{ν} − x|<\eps$. Если $ν,\mu \geqslant N$, то, в силу неравенства треугольника,получим $\displaystyle|x_{v}-x_{\mu}\leqslant|x_{v}-x|+|x_{\mu}-x|<\frac{\eps}{2}+\frac{\eps}{2} = \eps$ а это означает, что последовательность фундаментальна.
Достаточность. Пусть последовательность $\left\{x_{ν}\right\}$ фундаментальна. Покажем, что она сходится. Для этого достаточно установить, что для каждого $i = 1,\ldots, n$ числовая последовательность $\left\{x^{i}_{v}\right\}$ является сходящейся. Но это сразу следует из неравенства $|x^{i}_{v} — x^{i}_{\mu}|\leqslant |x_{v}-x_{\mu}|$ Действительно, поскольку последовательность $\left\{x_{ν}\right\}$ фундаментальна, то и числовая последовательность $\left\{x^{i}_{v}\right\}$ также фундаментальна. Применяя теперь критерий Коши сходимости числовых последовательностей, получаем, что последовательность $\left\{x^{i}_{v}\right\}$ сходится. Обозначим $x^{i} = \lim_{v\to+\infty}x^{i}_{v}(i =1,\ldots, n)$. Тогда получим, что последовательность $\left\{x_{ν}\right\}$ сходится к $x = \left(x^{1},…,x^{n}\right)$

Следующая теорема дает еще одно равносильное определение предельной точки множества.

Теорема. Для того чтобы точка $x \in R^{n}$ являлась предельной точкой множества $E$, необходимо и достаточно, чтобы существовала последовательность $\left\{x_{ν}\right\}$ попарно различных точек множества $E$, сходящаяся к $x.$

Необходимость. Пусть $x$ – предельная точка множества $E.$ Выберем произвольную точку $x_{1}\in E,$ отличную от $x$. Далее, выберем точку $x_{2}\in E$, отличную от $x,$ так, чтобы было выполнен неравенство $|x−x_{2}| < \frac{1}{2}|x-x_{1}|.$Продолжая этот процесс, получим последовательность точек $x_{ν} \in E, x_{ν} \neq x,$ и таких, что $|x − x_{ν}|<\frac{1}{2}|x-x_{v}|.$ Из последнего неравенства следует, что все точки xν попарно различны. Кроме того, из неравенства$|x_{ν} − x| < 2^{1-v}|x_{1} − x|$вытекает, что $\displaystyle\lim_{ν\to+\infty}x_{ν} = x.$
Достаточность. Пусть $\displaystyle\lim_{ν\to+\infty}x_{ν} = x$ и точки $x_{ν} \in E$ попарно различны. Тогда можно считать, что ни одна из них не совпадает с точкой $x$. Поскольку, в силу определения предела, любая окрестность точки $x$ содержит все элементы последовательности, начиная с некоторого номера, то $x$ – предельная точка множества $E.$

Лемма Больцано – Вейерштрасса. Из каждой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство. Пусть $\left\{x_{ν}\right\}$ – ограниченная последовательность. Обозначим через $E$ множество значений этой последовательности. Рассмотрим два случая.

  1. Если множество $E$ конечно, то найдется такая строго возрастающая последовательность индексов $ν_{1} < ν_{2} <\ldots,$ что $x_{ν1} = x_{ν2} = \ldots$ Это
    означает, что подпоследовательность $\left\{x_{ν_{k}}\right\} $сходится.
  2. Пусть множество $E$ бесконечно. Поскольку оно еще и ограничено, то $E$ имеет хотя бы одну предельную точку $x$. По предыдущей теореме, существует последовательность попарно различных точек из множества $E$, сходящаяся к $x$. Эти точки множества $E$ являются элементами последовательности $\left\{x_{ν}\right\}$ и, очевидно, можно считать, что номера $ν_{1}, ν_{2},\ldots$ этих элементов последовательности строго возрастают. Таким образом, мы получили подпоследовательность
    $\left\{x_{ν_{k}}\right\}$, сходящуюся к $x$.

Замечание.Можно было дать и прямое доказательство леммы Больцано – Вейерштрасса, аналогичное тому, что было приведено в одномерном случае (основанное на методе деления отрезка). Для этого нужно взять сегмент, содержащий все $x_{ν}$, и, проводя последовательно деление его сторон пополам, выбирать каждый раз тот частичный сегмент, в котором находится бесконечно много элементов последовательности $\left\{x_{ν}\right\}$.Проведите самостоятельно.

Пример 1.

Последовательность $\displaystyle\left(\frac{1}{n}+1,\left(-1\right)^{n}\right)$ расходится, так как предел $\left(-1\right)^{n}$ не существует, однако можно выделить сходящуюся подпоследовательность $x_{v_{i}}=\left(\frac{1 }{i}+1,\left(-1\right)^{n}\right),(i=2,4,…,2n),$ которая будет сходиться к точке $\displaystyle K \left(-1;1\right).$

[свернуть]

Пример 2.

Найти предел $\displaystyle x_{n}=\left(\frac{n+1}{n},\frac{n}{n-1},\frac{2n}{n^{3}+1}\right)$ $\displaystyle\lim_{n\to\infty}{x_{n}}=\left(1+\frac{1}{n},\frac{1+\frac{1}{n}}{1},\frac{2}{n^{2}+\frac{1}{n}}\right)$ $=\left(1,1,0\right).$

[свернуть]

Пример 3.

Доказать, исходя из определения, что $\displaystyle\lim_{v\to+\infty}{\left(\frac{5n}{n\cdot\sqrt{n}},\frac{2n}{2^{n}}\right)}=\left(0,0\right)$.$$\frac{5n}{n\cdot\sqrt{n}}\leqslant \frac{5}{\sqrt{n}}\leqslant \eps $$ $$\frac{n}{4^{n}}\leqslant \frac{1}{4^{n}}\leqslant \eps $$Выберем как $N_{\eps}$ число, удовлетворяющее неравенствам $N_{\eps}\geqslant\left(\frac{5}{\eps}\right)^{2}$ и $N_{\eps}\geqslant\ln{\frac{1}{\eps}},$ например $N_{\eps} = \ln{\frac{1}{\eps}}\cdot\left(\frac{5}{\eps}\right)^{2} $Следовательно, подпоследовательности по каждой переменной фундаментальны и ряд сходится,следовательно $\displaystyle\lim_{n\to+\infty}=\left(0,0\right)$.

[свернуть]

Последовательности точек

Используйте этот тест, чтобы проверить свои знания по только что прочитанной теме «Последовательности точек».

Литература

  1. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. с. 243-247.
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 2. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.173-177.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — С. 356-359
  4. Конспект лекций Лысенко З.М.

 

11.1 Предел функции

Пусть множество $E\subset\mathbb{R^n}$, $a$ — предельная точка множества $E$ и функция $f : E \mapsto \mathbb{R^m}$.

Определение. Точка $b \in \mathbb{R^m}$ называется пределом функции $f$ в точке $a$ по множеству $E$, если для любого $\varepsilon > 0$ найдется такое $\delta > 0$, что для всех $x \in E$, отличных от точки $a$ и удовлетворяющих условию $0 < |x-a| < \delta$, справедливо неравенство $|f(x) − b| < \varepsilon$. В этом случае пишут
$$b =\lim_{x \to \ a, x \in E} f(x)$$
и говорят, что $f(x)$ стремится к $b$, пробегая множество $E$, или $f(x)$ стремится к $b$ вдоль множества $E$.

Если множество $E$ содержит некоторый шар с центром в точке $a$, за исключением, быть может, самой точки $a$, то просто пишут $b = \lim_{x \to \ a} f(x)$.

Замечание 1. В самой точке $a$ функция $f$ может быть и не определена. Но даже если она и определена в точке $a$, то мы не требуем, чтобы было выполнено равенство $f(a) = b$, поскольку в точке $a$ выполнение неравенства $|f(x) − b| < \varepsilon$ не требуется.

Замечание 2. Пусть $f : E \mapsto \mathbb{R^m}$ и $\lim_{x \to a, x \in E} f(x) = b$. Тогда для любого подмножества $A \subset E$, для которого точка $a$ является предельной, очевидно, $\lim_{x \to a, x \in A} f(x) = b$. Если же по двум различным подмножествам $A_1, A_2 \subset E$, имеющим $a$ предельной точкой, пределы функции $f$ в точке $a$ будут различными, то по множеству $E$ в этой точке предела у функции $f$ нет. Это очевидно.

Пример. Пусть
$$ f(x,y) = \frac{x^2-y^2}{x^2+y^2} \quad ((x,y) \in E \equiv \mathbb{R^2}\backslash\{(0,0)\})$$
$$ A_1 = \{(x,y) \in E : x = y\}, \quad  A_2 = \{(x,y) \in E : x = 0\}.$$
Тогда, очевидно,
$$ \lim_{(x,y) \to (0,0), (x,y) \in A_1} f(x,y) = 0, \quad \lim_{(x,y) \to (0,0), (x,y) \in A_2} f(x,y) = -1.$$

Легко также убедиться в том, что у этой функции существуют пределы вдоль любой прямой, проходящей через начало координат, но эти пределы различные. Поэтому функция $f$ не имеет предела вдоль множества $E$.

Теорема. Пусть функция $f : E \mapsto \mathbb{R^m}$, $E \subset \mathbb{R^n}$, и $a$ — предельная точка множества $E$. Для того чтобы точка $b \in \mathbb{R^m}$ являлась пределом функции $f$ в точке $a$ по множеству $E$, необходимо и достаточно, чтобы для любой сходящейся к $a$ последовательности $\{x_v\}$ точек из $E$ отличных от $a$, было выполнено равенство $\lim_{v \to \infty} f(x_v) = b$.

Необходимость. Пусть $\lim_{x \to a, x \in E} f(x) = b$ и  пусть $x_v \in E$, $x_v \neq a$, $\lim_{v \to \infty} x_v = a$, т. е. зафиксирована некоторая последовательность $\{x_v\}$. Докажем, что $\lim_{v \to \infty} f(x_v) = b$.
Зададим $\varepsilon > 0$. Тогда, по определению предела функции, найдется такое $\delta > 0$, что для всех $x \in E$, удовлетворяющих условию $0 < |x−a| < \delta$, справедливо неравенство $|f(x) − b| < \varepsilon$. Так как $x_v \to a$ и $x_v \neq a$, то найдется такой номер $N$, что при любом $v \ge N$ будет $0 < |x_v − a| < \delta$.
Поэтому для $v \ge N$ выполнено неравенство $|f(x_v) — b| < \varepsilon$. Это означает, что $\lim_{v \to \infty} f(x_v) = b$.
Достаточность. Предположим, что предел функции $f$ в точке $a$ либо не существует, либо существует, но не равен $b$. Тогда найдется такое $\varepsilon_0 > 0$, что для любого $\delta > 0$ найдется точка $x^\prime \in E$, $x^\prime \neq a$, для которой $|x^\prime — a| < \delta $, но $|f(x^\prime) — b| \ge \varepsilon_0$. Полагая $\delta = \frac{1}{v}$, построим последовательность точек $x^\prime_v$, для которых  $0 < |x^\prime_v — a| < \frac{1}{v}$, но $|f(x^\prime_v) — b| \ge \varepsilon_0$. Тогда получим, что $x^\prime_v \to a$, но $f(x^\prime_v)$ не стремится к $b$, а это противоречит условию.

Доказанная теорема позволяет сформулировать равносильное определение предела функции по Гейне.

Определение.Точка $b$ называется пределом функции $f$ в точке $a$, если для любой последовательности $\{x_v\}$ точек из $E$, сходящейся к $a$, $x_v \neq a$, соответствующая последовательность $\{f(x_v)\}$ значений функции сходится к точке $b$.

Теорема (арифметические свойства предела).Пусть функции $f, g : E \mapsto \mathbb{R^m}$, $E \subset \mathbb{R^n}$, $a$ — предельная точка множества $E$ и
$$ \lim_{x \to a, x \in E}f(x) = b, \quad \lim_{x \to a, x \in E}g(x) = c.$$

Тогда

  1. $\lim_{x \to a, x \in E}(f + g)(x) = b + c;$
  2. $\lim_{x \to a, x \in E}(f \cdot g)(x) = b\cdot c;$
  3. если $f, g$ — действительные функции (т.е. $m = 1$ ) и $g(x) \neq 0, c(x) \neq 0$, то $\lim_{x \to a, x \in E}(\frac{f}{g})(x) = \frac{b}{c}$.

Для доказательства достаточно воспользоватся определением предела по Гейне и соответствующей теоремой для последовательностей.

Примеры решения задач

Пример 1.Найти предел неограниченной функции $f(x) = \frac{2x^2 + x — 1}{x — 1}$.

Решение

Пусть $$f(x) = \frac{2x^2 + x — 1}{x — 1}.$$ Множество $X$, на котором определена функция $f(x)$, получается из множества всех действительных чисел $\mathbb{R}$ удалением из него единицы; $X =\mathbb{R}\backslash\{1\}$. Выясним, существует или нет предел функции $f(x)$ в точке $x_0 = 0$. Возьмем какую-либо последовательность  $x_n \in X$, $n = 1, 2,\ldots$,  такую, что $\lim_{n \to \infty} x_n = 0$. Тогда на основании теорем получаем

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty}\frac{2x^2 _n + x_n — 1}{x_n — 1}=$$

$$= \frac{2(\lim_{n \to \infty}x_n)^2 + \lim_{n \to \infty} x_n — 1}{\lim_{n \to \infty}x_n — 1} = 1.$$

Таким образом, существует $\lim_{n \to \infty}f(x_n) = 1$ , а так  как он не зависит от выбора последовательности $x_n \to 0$, $x_n \in X$, $n = 1,2,\ldots$, то существует и предел $\lim_{n \to \infty}f(x) = 1.$

[свернуть]

Пример 2. Найти предел ограниченной, разрывной функции $f(x) = \sin\frac{1}{x}$.

Решение

Рассмотрим функцию  $$f(x) = \sin \frac{1}{x}.$$ Она определена на множестве $X =\mathbb{R}\backslash\{0\}$. Снова выясним, существует или нет у функции $f$ предел в точке $x_0 = 0$. Возьмем две последовательности $$x_n = \frac{1}{\pi n}$$ и $$x_n^\prime = \frac{1}{\frac{\pi}{2} + 2\pi n}, n = 1,2,\ldots.$$
Очевидно, что $\lim_{n \to \infty}x_n = \lim_{n \to \infty}x_n^\prime = 0, x_n \neq 0, x_n^\prime \neq  0$(условие $x \neq 0$ в данном случае означает, что $x \in X$), $f(x_n) = \sin \pi n = 0$, $f(x_n^\prime) = \sin( \frac{\pi}{2} + 2\pi n) = 1$, $n = 1, 2,\ldots .$. Поэтому $\lim_{n \to \infty}f(x_n) = 0$ и $\lim_{n \to \infty}f(x_n^\prime) = 1$, а это означает, что предела функции при $x \to 0$ не существует.

[свернуть]

Пример 3.Найти предел  $f(x) = \frac{x^2 + x + 1}{x^2 -1}$ по Гейне.

Решение

Пусть $$f(x) = \frac{x_n^2 + x + 1}{x^2 — 2}.$$

Найдем предел этой функции при $x \to \infty$. Ее областью определения является множество $X =\mathbb{R}\{\sqrt{2}, -\sqrt{2}\}$. Взяв какую-либо последовательность $x_n \in X$, $n = 1, 2,\ldots,$ $\lim_{n \to \infty} x_n = \infty$, будем иметь
$$\lim_{n \to \infty}f(x_n)=\lim_{n\to\infty}\frac{x_n ^2+x_n+ 1}{x_n^2 — 2}=\lim_{n \to \infty}\frac{1 + \frac{1}{x_n} + \frac{1}{x_n^2}}{1-\frac{2}{x_n^2}}=$$
$$=\frac {1 + \lim_{n\to\infty}\frac{1}{x_n}+\lim_{n\to\infty}\frac{1}{x_n^2}}{1 — 2\lim{n\to\infty}\frac{1}{x_n^2}}=1.$$
Отсюда следует, что $\lim_{n \to \infty}\frac{x^2 + x + 1}{x^2 — 2} = 1$.

[свернуть]

Пример 4. Найти предел всюду разрывной функции Дирихле.

Решение

Пусть $f$- функция Дирихле, то есть функция, равная $1$ на множестве всех рациональных чисел и нулю на множестве $I$ всех иррациональних чисел. Тогда в точке $x_0 = 0$ ее предел по множеству рациональних чисел равен $1$:  $$\lim_{x \to 0, x \in Q}f(x) = 1.$$

а по множеству иррациональних чисел — нулю: $$\lim_{x \to 0, x \in I}f(x) = 0.$$
По всему же множеству действительных чисел(то есть по множеству определения функции Дирихле) предел ее в точке $x_0 = 0$ не существует, так как уже существование или нет предела последовательности$\{f(x_n)\}$ при $n \to \infty$ зависит в данном случае от выбора последовательности $\{x_n\}$, стремящейся к нулю.

[свернуть]

Пример 5. Найти предел устранимо-разрывной функции  $\lim_{x \to 0}\frac{(2x^2 + x — 1)x}{x^2-x}$.

Решение

Найдем
$$\lim_{x \to 0}\frac{(2x^2 + x — 1)x}{x^2-x}.$$ Повторяя рассуждения, аналогичные тем, с помощью которых был вычислен предел в примере $1$, приходим к выражению $\frac{0}{0}$, т. е. к неопределенности, и тем самым не получаем ответа ни на вопрос о существовании предела, ни на вопрос о его значении, если он существует. Поэтому рассмотрим функцию
$$f(x) = \frac{2x^2 + x — 1}{x — 1},$$
получающуюся из функции
$$g(x) = \frac{(2x^2 + x — 1)x}{x^2 — x},$$
стоящей под знаком предела в условии, сокращением правой части равенства на $x$. Функции $f$ и $g$ совпадают в проколотой окрестности $U^{\circ}(0,1) = (-1,1) \backslash \{0\}$ точки $x_0 = 0$ и поэтому, согласно сделанному выше замечанию, одновременно имеют или нет пределы в этой точке по указанной проколотой окрестности, причем в случае существования этих пределов они равны. В примере же $1$ было показано, что $\lim_{x \to 0}f(x) = 1$ по всей области определения функции $f$, следовательно, и по ее подмножеству $U^{\circ}(0,1)$. Таким образом,
$$\lim_{x \to 0}g(x) = \lim_{x \to x_0, x \in U^{\circ}(0,1)}g(x) = \lim_{x \to x_0, x \in U^{\circ}(0,1)}f(x) = \lim_{x \to 0}f(x) = 1$$
(первое равенство справедливо в силу того, что предел является локальным свойством функции). Эти рассуждения являются обоснованием вычислений, которые в обычно употребляемой записи имеют следующий вид:
$$\lim_{x \to 0}\frac{(2x^2 + x — 1)x}{x^2 — 1} = \lim_{x \to 0}\frac{2x^2 + x — 1}{x — 1} = 1.$$

[свернуть]

Пример 6. Найти предел функции $f(x) = |signx|$.

Решение

Рассмотрим функцию $f(x) = |sign x|$. Какова бы ни была окрестность нуля  $U(0)$, у этой функции в точке $x_0 = 0$, очевидно, существует предел по проколотой окрестности $U^{\circ}(0)$:
$$\lim_{x \to 0, x \in U^{\circ}(0)}|sign x| = 1.$$
Вместе с тем предел $\lim_{x \to 0, x \in U(0)}|sign x|$ по всей окрестности $U(o)$ в точке $x_0 = 0$ у функции $|sign x|$ не существует, так как, например, для последовательности
$$x_n = \begin{cases} \frac{1}{n}, &\text{если n  = 2k, k = 1,2,…}\\ 0, &\text{если n  = 2k — 1, k = 1,2,…} \end{cases}$$
имеем $\lim_{n \to \infty}x_n = 0$ (и, следовательно, все ее члены начиная с некоторого будут лежать в заданной окрестности $U(0)$, а последовательность $|sign x_n|$ не имеет предела(на четных местах у нее стоят единицы, а на нечетных — нули).

[свернуть]

Литература:

  1. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. с. 251-253.
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.70-72
  3. Лысенко З.М. Конспект лекций по математическому анализу.

Тест. Пределы функций.

Этот тест проверить ваши знания по теме «Пределы функций».

15.2.1 Признак сравнения рядов с неотрицательными слагаемыми

Теорема (признак сравнения).Пусть даны два ряда$$\displaystyle \sum_{n=1}^{\infty} a_n \tag {15.4} $$ $$\displaystyle \sum_{n=1}^{\infty} b_n \tag{15.5} $$ где $a_n \geqslant 0,\ b_n \geqslant 0 \left( n=1 ,2,\ldots \right).$ Предположим, что ряд $\left( 15.5 \right) $ является мажорантным рядом для ряда $\left( 15.4 \right) $, т. е. начиная с некоторого номера выполнены неравенства $a_n \leqslant b_n.$ Тогда из сходимости ряда $\left( 15.5 \right) $ следует сходимость ряда $\left( 15.4 \right) $, а из расходимости ряда $\left( 15.4 \right) $ следует расходимость ряда $\left( 15.5 \right). $

Так как конечное число слагаемых ряда не влияет на его сходимость, то, не ограничивая общности, можем считать, что неравенство $a_n \leqslant b_n$ выполнено для всех $n \geqslant 1.$ Пусть $S’_n$ и $S_n^{\prime \prime}$ – частичные суммы рядов $\left( 15.4 \right) $ и $\left( 15.5 \right) $, соответственно. Тогда ясно, что $S’_n \leqslant S_n^{\prime \prime} \left(n \geqslant 1 \right).$ Если ряд $\left( 15.5 \right) $ сходится, то $S_n^{\prime \prime}$ ограничены и, следовательно, ограничены и $S’_n,$ а это влечет сходимость ряда $\left( 15.4 \right) $. Обратно, если расходится ряд $\left( 15.4 \right) $, то $S’_n$ неограниченно возрастают и, следовательно, неограниченно возрастают и $S_n^{\prime \prime},$ т. е. ряд $\left( 15.5 \right)$ расходится.

Замечание 1. При доказательстве существенно было использовано условие $a_n \geqslant 0,\ b_n \geqslant 0 \ ( n = 1 ,\ 2,\ldots).$ Без этого условия теорема теряет силу. Например, если $a_n =−1, b_n =0 \ (n =1 ,\ 2,\ldots),$ то $a_n \leqslant b_n,$ ряд $\left( 15.5 \right) $ сходится, а ряд $\left( 15.4 \right) $ расходится.

Замечание 2. В доказанной теореме из расходимости ряда $\left( 15.5 \right) $ не следует расходимость ряда $\left( 15.4 \right) $, а из сходимости ряда $\left( 15.4 \right) $ не следует сходимость ряда $\left( 15.5 \right) $. Например, $a_n =0,b_n = 1 \ (n = 1,\ 2,\ldots).$

Следствие (признак сравнения в предельной форме).Пусть даны ряды $\left( 15.4 \right) $ и $\left( 15.5 \right) $ с положительными слагаемыми. Предположим, что существует (быть может, и бесконечный) $$\displaystyle \lim_{n \to \infty} \frac{a_n}{b_n} = \lambda.$$ Тогда

  1. если $\lambda =0,$ то из сходимости ряда $\left( 15.5 \right) $ следует сходимость ряда $\left( 15.4 \right) $, а из расходимости ряда $\left( 15.4 \right) $ следует расходимость ряда $\left( 15.5 \right) $;
  2. если $\lambda= + \infty ,$ то из сходимости ряда $\left( 15.4 \right) $ следует сходимость ряда $\left( 15.5 \right) $, а из расходимости ряда $\left( 15.5 \right) $ следует расходимость ряда $\left( 15.4 \right) $;
  3. если $0< \lambda < + \infty,$ то ряды $\left( 15.4 \right) $ и $\left( 15.5 \right) $ сходятся или расходятся одновременно.

Докажем c. Пусть $0 < \lambda < + \infty .$ Тогда, начиная с некоторого номера $N,$ выполнено неравенство $\frac{\lambda}{2} \leqslant \frac{a_n}{b_n} \leqslant 2 \lambda \ (n \geqslant N),$ т.е. $$\frac{\lambda}{2}b_n \leqslant a_n \leqslant 2 \lambda \cdot b_n.$$ Если расходится ряд $\left( 15.4 \right) $, то, в силу доказанного признака сравнения, из правого неравенства следует расходимость ряда $\left( 15.5 \right) $. Если ряд $\left( 15.4 \right) $ сходится, то, в силу признака сравнения, из левого неравенства следует сходимость ряда $\left( 15.5 \right).$

Доказательства случаев a. и b. аналогичны и мы их опускаем.

Пример 1. Исследовать на сходимость ряд $$\displaystyle \sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n}.$$ Из неравенства $ \sin x < x $, где $x$ положителен, следует, что $2^n \sin \frac{1}{3^n} \leqslant \left( \frac{2}{3} \right) ^n \ (n = 1,\ 2,\ldots).$ Так как ряд $\displaystyle \sum_{n=1}^{\infty} \left( \frac{2}{3} \right) ^n$ сходится (это – геометрическая прогрессия со знаменателем $\frac{2}{3}$), то исходный ряд также сходится в силу признака сравнения.

Пример 2. Ранее мы уже установили с помощью критерия Коши, что гармонический ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n}$ расходится. Докажем его расходимость с использованием признака сравнения. Сравним его с рядом $\displaystyle \sum_{n=1}^{\infty} \ln \left( 1 + \frac{1}{n} \right).$ Вычислим частичные суммы $$\displaystyle \sum_{k=1}^{\infty} \ln \left( 1 + \frac{1}{k} \right) = \sum_{k=1}^{\infty} \left[ \ln \left( k+1 \right) — \ln k \right] =$$ $$\left( \ln 2 — \ln 1 \right) + \left( \ln 3 — \ln 2 \right)+\ldots + \left( \ln \left( n+1 \right) — \ln n \right) = \ln \left( n + 1 \right) \rightarrow + \infty .$$ Значит, ряд $\displaystyle \sum_{n=1}^{\infty} \ln \left( 1 + \frac{1}{n} \right).$ расходится. Кроме того, из известного равенства $\displaystyle \lim_{x \to 0} \frac{\ln \left( 1 + x \right) }{x} = 1$ следует, что $\displaystyle \lim_{n \to \infty} \frac{\ln \left( 1 + \frac{1}{n} \right) }{ \frac{1}{n}} = \lambda = 1.$ Отсюда, всилу признака сравнения в предельной форме, вытекает, что ряды $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n}$ и $\displaystyle \sum_{n=1}^{\infty} \ln \left( 1 + \frac{1}{n} \right)$ сходятся или расходятся одновременно. Поскольку, как уже установлено, ряд $\displaystyle \sum_{n=1}^{\infty} \ln \left( 1 + \frac{1}{n} \right)$ расходится, то расходится и исходный гармонический ряд.

Пример 3. Рассмотрим ряд$\displaystyle \sum_{n=1}^{\infty} \left( 1 — \cos \frac{x}{n} \right),$ где $x \in \mathbb{R}$ – параметр. Ясно, что этот ряд сходится при $x =0.$ Пусть $x \neq 0$. В силу известного соотношения $1 − \cos \alpha \sim \frac{\alpha ^ 2}{2} \ (\alpha \rightarrow 0),$ имеем $1 − \cos \frac{x}{n} \sim \frac{x^2}{2} \cdot \frac{1}{n^2} \ (n \rightarrow \infty).$ Поэтому в качестве ряда для сравнения целесообразно выбрать ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2},$ для которого $\displaystyle \lim_{n \to \infty}\frac{1 — \cos \frac{x}{n}}{\frac{1}{n^2}} = \frac{x^2}{2}.$ Из признака сравнения в предельной форме следует, что ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}$ и исходный ряд сходятся или расходятся одновременно (при $x \neq 0$). Выше было показано, что ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится (это – обобщенный гармонический ряд при $s =2> 1$). Поэтому сходится и исходный ряд при любом $x$.

Пример 4. Исследуйте на сходимость ряд $$\displaystyle \sum_{n=1}^{\infty} \frac{n+1}{n^2}.$$

Решение

Уменьшив числитель, найдём ряд-миноранта $$\sum_{n=1}^{\infty} \frac{n+1}{n^2} > \sum_{n=1}^{\infty} \frac{n}{n^2} =\sum_{n=1}^{\infty} \frac{1}{n}$$ Как уже рассматривали выше, это гармонический ряд у которого степень $s \leqslant 1$ а значит этот ряд расходится, а по признаку сравнения раз расходится ряд-миноранта, то расходится и исходный ряд.

[свернуть]

Пример 5. Исследуйте на сходимость ряд $$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2+1}.$$

Решение

Арктангенс ограничен сверху константой $\frac{\pi}{2}$, значит $$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2+1} \leqslant \sum_{n=1}^{\infty} \frac{\pi}{2n^2+2}$$ Уменьшив знаменатель дробь увеличивается $$\sum_{n=1}^{\infty} \frac{\pi}{2n^2+2} < \sum_{n=1}^{\infty} \frac{\pi}{2n^2}$$Как уже рассматривали выше, это гармонический ряд у которого степень $s > 1$ а значит этот ряд cходится, а по признаку сравнения раз ряд-мажоранта сходится, то сходится и исходный ряд.

[свернуть]

Пример 6. Исследуйте на сходимость ряд $$\sum_{n=1}^{\infty} \frac{9n + 7}{2n^3 + 5n^2 -3}.$$

Решение

Сравним общий член нашего ряда с общим членом ряда $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}.$ Воспользуемся признаком сравнения в предельной форме.$$\lim_{n \to \infty} \frac{\frac{9n+7}{2n^3+5n^2-3}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2 \cdot \left( 9n+7 \right) }{2n^3+5n^2-3}=$$ $$= \lim_{n \to \infty} \frac{9n^3+ 7n^2}{2n^3 + 5n^2 -3} = \left| \frac{\infty}{\infty} \right| = \lim_{n \to \infty} \frac{\frac{9n^3}{n^3} + \frac{7n^2}{n^3}}{\frac{2n^3}{n^3} + \frac{5n^2}{n^3}-\frac{3}{n^3}} = $$ $$=\lim_{n \to \infty} \frac{9 +\frac{7}{n}}{2 + \frac{5}{n}-\frac{3}{n^3}} = \frac{9}{2}.$$ Так как $0 < \frac{9}{2} < \infty,$ то ряды $\displaystyle \sum_{n=1}^{\infty} \frac{9n + 7}{2n^3 + 5n^2-3}$ и $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходятся либо расходятся одновременно. Так как ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, то сходится и ряд $\displaystyle \sum_{n=1}^{\infty} \frac{9n + 7}{2n^3 + 5n^2-3}.$

[свернуть]

Литература

Сходящиеся и расходящиеся числовые ряды. Признак сравнения

Тест на проверку знаний о числовых рядах и признака сравнения числовых рядов.

15.2 Ряды с неотрицательными слагаемыми

Пусть $\left\{ a_n \right\}_{n=1}^{\infty}$–последовательность неотрицательных чисел. Рассмотрим ряд $$\sum_{n=1}^{\infty} a_n \tag{15.3}$$

Теорема. Пусть $a_n \geqslant 0.$ Тогда ряд $\left( 15.3 \right) $ сходится в том и только в том случае, когда последовательность его частичных сумм $S_n$ ограничена сверху.

Так как $a_n \geqslant 0,$ то $S_n = S_{n−1} + a_n \geqslant S_{n−1}$, т. е. последовательность частичных сумм Sn монотонно возрастает. По теореме о пределе монотонной последовательности, сходимость $S_n$ (а значит, и сходимость ряда $\left( 15.3 \right) $) эквивалентна ее ограниченности.

Пример. Обобщенным гармоническим рядом называется ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^s},$ где число $s>0.$ Ранее мы уже установили, что при $s=1$ этот ряд расходится. Если $0<s<1,$ то$$S_n \left( s \right) = 1 +\frac{1}{2^s} + \ldots +\frac{1}{n^s} \geqslant 1 +\frac{1}{2} + \ldots +\frac{1}{n} = S_n,$$ и, в силу расходимости гармонического ряда, последовательность частичных сумм обобщенного гармонического ряда не ограничена сверху, т. е. обобщенный гармонический ряд расходится при $0<s \leqslant 1.$

По-другому расходимость обобщенного гармонического ряда при $0<s \leqslant 1$ можно было бы доказать так:$$S_n \left( s \right) = 1 +\frac{1}{2^s} + \ldots +\frac{1}{n^s}\geqslant n\cdot \frac{1}{n^s} = n ^{1-s} \rightarrow +\infty \ \ \left( n \rightarrow \infty \right),$$ откуда следует, что $S_n \left( s \right) \rightarrow +\infty \ \ \left( n \rightarrow \infty \right), $ т. е. расходимость ряда.

Рассмотрим теперь случай $s>1$ Пусть $n \in N.$ Выберем такое натуральное $m$, что $n<2^m.$ Тогда $$S_n \left( s \right) \leqslant S_{2^m-1} \left( s \right) = 1 + \left( \frac{1}{2^s} + \frac{1}{3^s} \right) + \left( \frac{1}{4^s} + \frac{1}{5^s} +\frac{1}{6^s} + \frac{1}{7^s} \right) + \ldots + $$ $$+ \left( \frac{1}{\left( 2^{m-1} \right)^s} + \frac{1}{\left( 2^{m-1}+1 \right)^s} +\ldots + \frac{1}{\left( 2^{m}-1 \right)^s}\right) \leqslant $$ $$\leqslant 1 + 2 \cdot \frac{1}{2^s} + 4 \cdot \frac{1}{4^s} + \ldots + 2^{m-1} \cdot \frac{1}{\left( 2^{m-1} \right)^s} = $$ $$ = 1 + 2^{1-s} + \left( 2^2 \right) ^{1-s} + \ldots + \left( 2^{m-1} \right) ^{1-s} = $$ $$ = 1 + 2^{1-s} + \left( 2^{1-s}\right)^2 + \ldots + \left( 2^{1-s}\right)^{m-1} = \frac{1 — \left( 2^{1-s} \right)^m}{1 — 2^{1-s}} < \frac{1}{1-2^{1-s}}$$

(условие $s>1$ использовано в последнем неравенстве). Отсюда следует, что при $s>1$ имеем $S_n\left( s \right) \leqslant \frac{1}{1−2^{1−s}}$, т. е. последовательность частичных сумм $\left\{S_n \left( s \right )\right\}$ ограничена сверху и, в силу доказанной теоремы, обобщенный гармонический ряд сходится при $s>1.$

Окончательно имеем: ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^s}$ сходится при $s>1$ и расходится при $0 < s \leqslant 1$. При $s \leqslant 0$ этот ряд, очевидно, расходится, так как не выполнено необходимое условие сходимости.