Определение частной производной и её геометрический смысл

Определение. Пусть функция $$ f \left( x \right) = f \left( x_1, \dots, x_n \right) $$ определена в окрестности точки $ x^0 = \left( x_2^0, \dots, x_n^0 \right) $. Рассмотрим функцию одной переменной $$ \varphi \left( x_1 \right) = f \left( x_1, x_2^0, \dots, x_n^0 \right). $$ Функция $ \varphi \left( x_1 \right) $ может иметь производную в точке $ x_1^0 $. По определению такая производная называется частной производной $ \frac{ \partial f }{ \partial x_1 } \left( x^0 \right) $. Таким образом, $$ \frac{ \partial f }{ \partial x_1 } \left( x^0 \right) = \frac{ \partial f }{ \partial x_1 } \left( x_1^0, \dots, x_n^0 \right) = \\ = \lim\limits_{\Delta x_1 \to 0 } \frac{ f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0, \dots, x_n^0 \right) }{ \Delta x_1 }, $$ где $ \Delta x_1 = x_1 — x_1^0 $.
Аналогично определяются частные производные (первого порядка) $$ \frac{ \partial f }{ \partial x_i } \left( x_1^0, \dots, x_n^0 \right) , i = \overline{2, n}. $$ Употребляются и другие обозначения для частных производных первого порядка: $$ \frac{ \partial f }{ \partial x_i } \left( x^0 \right) = f_{x_i} \left( x^0 \right) = D_i f \left( x^0 \right) = \\ = {f’}_{x_i} \left( x^0 \right) = \frac{ \partial }{ \partial x_i } f \left( x^0 \right) = \frac{ \partial f \left( x^0 \right) }{ \partial x_i }. $$ Функция двух переменных может иметь в точке $ \left( x^0, y^0 \right) $ две частные производные первого порядка $$ \frac{ \partial f }{ \partial x } \left( x^0, y^0 \right), \frac{ \partial f }{ \partial y } \left( x^0, y^0 \right). $$ Для функции трех переменных — три частные производные первого порядка $$ \frac{ \partial f }{ \partial x } \left( x^0, y^0, z^0 \right), \frac{ \partial f }{ \partial y } \left( x^0, y^0, z^0 \right), \frac{ \partial f }{ \partial z } \left( x^0, y^0, z^0 \right). $$ Поскольку при вычслении частных производных все переменные, кроме одной, фиксируются, то техника вычисления частных производных такая же, как техника вычисления производных функции одной переменной.
Например, $$ \frac{ \partial }{ \partial x } \sqrt{x^2 + y^2} = \frac{ 1 }{ 2 \sqrt{x^2 + y^2} } \frac{ \partial }{ \partial x } \left( x^2 + y^2 \right) = \frac{ x }{ \sqrt{x^2 + y^2} }. $$

Геометрический смысл

kolomeiets20160630Рассмотрим функцию двух переменных $ z = f \left( x, y \right) $, определенную на множестве $ D \subset \mathbb{R}^2 $ и имеющую конечные частные производные $ \frac{ \partial z }{ \partial x } $ и $ \frac{ \partial z }{ \partial y } $ в точке $ M_0 \left( x_0, y_0 \right) $. Чтобы выяснить геометрический смысл частных производных, выполним следующие построения. В плоскости $ Oxy $ отметим точку $ M_0 $.
Затем нарисуем поверхность $ S $, являющуюся графиком функции $ z = f \left( x, y \right) $. Без ограничения общности будем полагать, что поверхность расположена над плоскостью $ Oxy $. Через точку $ M_0 $ проведем плоскость $ y = y_0 $ параллельную коорднатной плоскости $ Oxy $. В сечении поверхности $ S $ этой плоскостью получаем кривую $ \Gamma $. Уравнение этой кривой описывается функцией одной переменной $ z = f \left( x, y_0 \right) $. Так как в точке $ M_0 $ существует частная производная $ {f’}_x \left( x_0, y_0 \right) $, то она согласно геометрическому смыслу обычной производной функции одной переменной равна угловому коэффициенту касательной, проведенной в точке $ N \left( x_0, y_0, f \left( x_0, y_0 \right) \right) $ к кривой $ \Gamma $: $$ {f’}_x \left( x_0, y_0 \right) = \tan \alpha, $$ где $ \alpha $ — угол между касательной и положительным направлением оси $ Ox $. В этом состоит геометрический смысл частной производной $ {f’}_x \left( x_0, y_0 \right) $.

Список литературы

Тест

Тест для проверки усвоения материала

Условия независимости криволинейного интеграла 2-го рода от пути интегрирования

Условия независимости криволинейного интеграла 2-го рода от пути интегрирования

Для того чтобы $ \int\limits_{\left( AB \right)}^{ } Pdx + Qdy $ при любых кривых $\left(AB \right) \subset \left( T \right)$ где $ \left( T \right)$ — это двухмерное пространство, не зависел от пути интегрирования $\left(AB \right)$ , а зависел только от положения начальной и конечной точек $A$ и $B$, необходимo и достаточно, чтобы $\int\limits_{\left( AB \right)}^{ } Pdx + Qdy = 0$ для любого замкнутого контура $\left( L \right) \subset \left( T \right)$

Необходимость

Пусть интеграл не зависит от пути интегрирования. Тогда для произвольного замкнутого контура $\left( L \right) \subset \left( T \right)$ изображенного на рисунке.

Произвольный замкнутый контур

Рисунок: Произвольный замкнутый контур

имеем

$$ \int\limits_{\left( L \right)}^{ } Pdx + Qdy = \int\limits_{\left( ACB \right)}^{ } Pdx + Qdy + \int\limits_{\left( BDA \right)}^{ } Pdx + Qdy = \int\limits_{\left( ACB \right)}^{ } Pdx + $$$+ Qdy — \int\limits_{\left( ADB \right)}^{ } Pdx + Qdy = 0 $

Так как интеграл не зависит от пути интегрирования.

Достаточность

Докажем, что при выполнении условии теоремы

$$ \int\limits_{\left( ACB \right)} Pdx + Qdy = \int\limits_{\left( ADB \right)} Pdx + Qdy $$
Для этого докажем, что разность левой и правой частей этого равенства равнв нулю:

$$ \int\limits_{\left( ACB \right)} Pdx + Qdy — \int\limits_{\left( ADB \right)} Pdx + Qdy = \int\limits_{\left( ACB \right)} Pdx + Qdy + \int\limits_{\left( BDA \right)} Pdx + $$ $ + Qdy = \int\limits_{\left( ACBDA \right)}^{ } Pdx + Qdy = 0$

как интеграл по закнутому контуру.

Пример:

Вычислить криволинейный интеграл при помощи формулы Ньютона-Лейбница.

$$ \int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)}ydx + xdy $$

Спойлер

$P = y, Q = x$. Так как $\frac{dP}{dy} = 1 = \frac{dQ}{dx}$, так как этот интеграл не зависит от пути интегрирования то

$$ \varphi = \left( x,y \right) = \int\limits_{0}^{x} P \left( t,0 \right)dt + \int\limits_{0}^{y} Q \left( x,u \right)dy = \int\limits_{0}^{1} 0 dt + \int\limits_{0}^{y}xdu = xy \Rightarrow $$

$$ \Rightarrow \int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)}xdy + ydx = xy \mid_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)} = -13 $$

[свернуть]

Пример:

Вычислить криволинейный интеграл $\int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)}\left ( x + y \right)dx + xdy$

Спойлер

$$\int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)}P + \left ( x, y \right) dx + Q \left ( x , y \right)dy = \int\limits_{a}^{b} \left[ P \left ( x, y \right) + Q \left ( x, y \right) \frac {dy}{dx} \right]dx , \Rightarrow $$ $\Rightarrow \int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)} \left ( x, y \right) dx + xdy = \int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)} \left ( x + x + x\right) dx = \int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)} 3xdx = 3\left[ \left( \frac{{x}^{2}}{2} \right)\mid_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)} \right] = $

$$ = 3\left[ \frac{16}{2} — \frac{49}{2} \right] = 3 \left( — \frac{33}{2} \right) = — \frac{49}{2} $$

[свернуть]
Литература
  1. А. Р. Лакерник, «Высшая математика краткий курс», Логос, 2008, стр. 404-414
  2. Тер-Крикоров A.M., Шабунин М.И. Курс Математического анализа стр. 505-508

Проверьте, как вы усвоили предоставленный материал.

Ограниченность сходящейся последовательности

Определение

Пусть задано метрическое пространство $X$. Последовательность $\{ x^{(n)} \}$ называется ограниченной, если существует $C > 0$ и существует $a \in X$ такие, что для любого $n \in \mathbb{N}$ выполняется неравенство: $\rho(x^{(n)}, a) \le C$.

Теорема (ограниченность сходящейся последовательности)

Если последовательность имеет предел, то она ограничена.

Доказательство

Пусть дана последовательность $\{x^{(n)}\}$ и $\lim \limits_{n \to \infty} x^{(n)} = a$. По определению сходящейся последовательности, $\lim \limits_{n \to \infty} \rho(x^{(n)}, a) = 0$. По определению ограниченной числовой последовательности, числовая последовательность $\{\rho(x^{(n)}, a)\}$ ограничена, то есть существует $C \in \mathbb{R}$ такое, что для любого $k \in \mathbb{N}$ выполняется неравенство $\rho(x^{(k)}, a) \le C$. По определению ограниченной последовательности $\{x^{(n)}\}$ — ограничена.

Спойлер

Рассмотрим последовательность $x^{(n)} = ((-1)^n, \dfrac{1}{n}, \dfrac{1}{2^n})$, $(n = 1, 2, \ldots)$ точек в пространстве $\mathbb{R}^3$ с заданной евклидовой метрикой. Эта последовательность ограничена: $\rho(x^{(n)}, 0) \le \sqrt{3}$, но не имеет предела, поскольку не имеет предела числовая последовательность, составленная из первых координат данной последовательности.

Последовательность $y_n = (\frac{n+1}{n}, \frac{1}{n}, \frac{2n-1}{n+3})$ $(n = 1, 2, \ldots)$ точек из $\mathbb{R}^3$, очевидно, имеет пределом точку $y = (1, 0, 2)$, так как сходимость в метрике $\mathbb{R}^n$ эквивалентна покоординатной.

[свернуть]

Источники

  • Конспект лекций по математическому анализу Лысенко З.М.

Литература

Предел сходящейся последовательности

Тестовые вопросы по темам «Определение предела сходящейся последовательности. Единственность предела сходящейся последоваетльности. Ограниченность сходящейся последовательности».

Определение интеграла Фурье

Для лучшего понимания материала, изложенного ниже, пожалуйста, ознакомьтесь с темой «Ряды Фурье».

Интегральная формула Фурье

Если интервал $\left[ -l,l \right],$ на котором функция $f\left(x\right)$ разлагается в тригонометрический ряд Фурье, неограниченно возрастает, т.е. $l\rightarrow +\infty,$ то ряд Фурье превращается в интеграл Фурье. При переходе к пределу происходит качественный скачок: функция, заданная на любом конечном интервале $\left[ -l,l \right],$ разлагается в ряд «гармонических колебаний», частоты которых образуют дискретную последовательность; функция $f\left(x\right),$ заданная на всей оси $x$ или на полуоси $x,$ разлагается в интеграл, который представляет собой сумму «гармонических колебаний», частоты которых непрерывно заполняют действительную полуось $0\le \lambda \le +\infty .$ Рассмотрим этот предельный переход от ряда Фурье к интегралу Фурье.

Замечание. Напомним, что функция $f$ является кусочно-гладкой на отрезке $\left[ a,b \right],$ если:

  • $f$ непрерывна во всех точках, кроме, быть может, конечного числа точек ${ x }_{ 1 },\dots ,{ x }_{ n }\in \left(a,b\right).$
  • $\forall i=1,\dots ,n \quad \exists f\left({ x }_{ i }\pm 0\right),\quad f\left(a+0\right),\quad f\left(b-0\right).$
  • $f$ – дифференцируема во всех точках, кроме, быть может, конечного числа точек ${ x }_{ 1 },\dots ,{ x }_{ n }.$
  • $\exists f^{ \prime }\left({ x }_{ i }\pm 0\right).$Пусть $f\left(x\right)$ задана на всей оси $x$ и на каждом конечном отрезке $\left[ -l,l \right],$ является кусочно-гладкой. Тогда, в силу основной теоремы о сходимости тригонометрического ряда Фурье, при любом $l>0$ $$f(x)=\frac { { a }_{ 0 } }{ 2 } +\sum _{ k=1 }^{ +\infty }{ \left( { a }_{ k }\cos { \frac { k\pi x }{ l } } +{ b }_{ k }\sin { \frac { k\pi x }{ l } } \right) } ,\quad \left( 1 \right) $$
    где $$\left(2\right)\quad \begin{cases} { a }_{ 0 }=\frac { 1 }{ l } \int\limits_{ -l }^{ l }{ f\left(\xi \right) } d\xi , \\ { a }_{ k }=\frac { 1 }{ l } \int\limits_{ -l }^{ l }{ f\left(\xi \right)\cos { \frac { k\pi \xi }{ l } d\xi , } } \\ { b }_{ k }=\frac { 1 }{ l } \int\limits_{ -l }^{ l }{ f\left(\xi \right)\sin { \frac { k\pi \xi }{ l } d\xi . } } \end{cases}$$
    Равенство $\left(1\right)$ имеет место, если $x$ — внутренняя точка отрезка $\left[ -l,l \right],$ в которой $f\left(x\right)$ непрерывна; если же $x$ — внутренняя точка этого отрезка, в которой $f\left(x\right)$ разрывна, то в левой части равенства $\left(1\right)$ $f\left(x\right)$ нужно заменить через $\frac { f\left(x+0\right)+f\left(x-0\right) }{ 2 }.$
    Подставляя выражения $\left(2\right)$ в $\left(1\right),$ получим $$f\left(x\right)=\frac { 1 }{ 2l } \intop_{ -l }^{ l }{ f\left(\xi \right)d\xi } +\frac { 1 }{ l } \sum _{ k=1 }^{ +\infty }{ \intop_{ -l }^{ l }{ f\left(\xi \right)\cos { \frac { k\pi }{ l } } \left(\xi -x\right)d\xi } }.\quad \left(3\right) $$
    Если $f\left(x\right)$ ещё и абсолютно интегрируема на всей оси $x,$ т.е. $$\intop_{ -\infty }^{ +\infty }{ \left| f\left(x\right) \right| dx } =Q<+\infty, \quad \left(4\right)$$
    то при переходе к пределу при $l\rightarrow +\infty$ первое слагаемое в правой части $\left(3\right)$ в силу условия $\left(4\right)$ стремится к нулю. Следовательно, $$f\left(x\right)=\lim _{ l\rightarrow +\infty }{ \frac { 1 }{ l } \sum _{ k=1 }^{ +\infty }{ \intop_{ -l }^{ l }{ f\left(\xi \right)\cos { \frac { k\pi }{ l } } \left(\xi -x\right)d\xi } . } } \quad \left(5\right)$$ Положим $\frac { k\pi }{ l } ={ \lambda }_{ k },$ $\frac { \pi }{ l } ={ \Delta \lambda }_{ k }.$ Тогда $\left(5\right)$ можно переписать в виде $$f\left( x \right) =\lim _{ \begin{matrix} l\rightarrow +\infty \\ \Delta { \lambda }_{ k }\rightarrow 0 \end{matrix} }{ \frac { 1 }{ \pi } } \sum _{ k=1 }^{ +\infty }{ \Delta { \lambda }_{ k } } \intop_{ -l }^{ l }{ f\left( \xi \right) \cos { { \lambda }_{ k } } \left( \xi -x \right) d\xi }.\quad \left( 6 \right) $$
    Будем рассуждать нестрого:

    1. при больших значениях $l$ интеграл $$\intop_{ -l }^{ l }{ f\left(\xi \right)\cos { { \lambda }_{ k } } \left(\xi -x\right)d\xi }$$ можно заменить интегралом
      $$\intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda }_{ k } } \left(\xi -x\right)d\xi },$$
    2. $$\sum _{ k=1 }^{ +\infty }{ \Delta { \lambda }_{ k } } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda }_{ k } } \left(\xi -x\right)d\xi } $$ является интегральной суммой для интеграла $$\intop_{ 0 }^{ +\infty }{ d\lambda } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda } } \left(\xi -x\right)d\xi } ,$$ поэтому из $\left(6\right)$ получаем $$f\left(x\right)=\frac { 1 }{ \pi } \intop_{ 0 }^{ +\infty }{ d\lambda } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda } } \left(\xi -x\right)d\xi } , \quad \left(7\right)$$ где в левой части равенства $\left(7\right)$ вместо $f\left(x\right)$ нужно писать $\frac { f\left(x+0\right)+f\left(x-0\right) }{ 2 } ,$ если $x$ является точкой разрыва функции $f\left(x\right).$

    Равенство $\left(7\right)$ называется интегральной формулой Фурье, а интеграл, стоящий в её правой части, — интегралом Фурье либо двойным интегралом Фурье

    Обоснование интегральной формулы Фурье

    Равенство $\left(7\right)$ было получено с помощью формальных предельных переходов, которые не были обоснованы.
    Вместо того чтобы их обосновать, удобнее непосредственно доказывать справедливость равенства $\left(7\right).$

    Теорема

    Если функция $f\left(x\right),$ кусочно-гладкая на каждом конечном отрезке оси $x,$ абсолютно интегрируема на всей оси $x,$ т.е. интеграл $\int\limits_{ -\infty }^{ +\infty }{ \left| f\left(x\right) \right| dx } $ сходится, то $$\lim _{ l\rightarrow +\infty }{ \frac { 1 }{ \pi } \intop_{ 0 }^{ l }{ d\lambda } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda } } \left(\xi -x\right)d\xi } } =\frac { f\left(x+0\right)+f\left(x-0\right) }{ 2 }.$$

    Доказательство

    Заметим прежде всего, что интеграл $$\intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { \lambda \left(\xi -x\right)d\xi } },$$ зависящий от параметра $\lambda,$ сходится равномерно по параметру $\lambda$ при $0\le \lambda \le +\infty,$ так как $\left| f\left(\xi \right)\cos { \lambda } \left(\xi -x\right) \right| \le \left| f\left(\xi \right) \right| ,$ а интеграл $\int\limits_{ -\infty }^{ +\infty }{ \left| f\left(\xi \right) \right| d\xi } $ по условию сходится. Следовательно, можно изменить порядок интегрирования, т.е. записать так:
    $$\frac { 1 }{ \pi } \intop_{ 0 }^{ l }{ d\lambda } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda } } \left(\xi -x\right)d\xi } =$$
    $$=\frac { 1 }{ \pi } \intop_{ -\infty }^{ +\infty }{ d\xi } \intop_{ 0 }^{ l }{ f\left(\xi \right)\cos { { \lambda } } \left(\xi -x\right)d\lambda } =$$
    $$=\frac { 1 }{ \pi } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\frac { \sin { l\left(\xi -x\right) } }{ \xi -x } d\xi } =$$
    $$=\frac { 1 }{ \pi } \intop_{ -\infty }^{ +\infty }{ f\left(x+\zeta \right)\frac { \sin { l\zeta } }{ \zeta } d\zeta } ,$$
    где $\zeta=\xi-x,$ $d\zeta=d\xi.$ Нам остаётся доказать, что $$\lim _{ l\rightarrow +\infty }{ \frac { 1 }{ \pi } \intop_{ -\infty }^{ 0 }{ f\left(x+\zeta \right)\frac { \sin { l\zeta } }{ \zeta } d\zeta } } =\frac { f\left(x-0\right) }{ 2 },\quad\left(8\right)$$
    $$\lim _{ l\rightarrow +\infty }{ \frac { 1 }{ \pi } \intop_{ 0 }^{ +\infty }{ f\left(x+\zeta \right)\frac { \sin { l\zeta } }{ \zeta } d\zeta } } =\frac { f\left(x+0\right) }{ 2 }.\quad\left(9\right)$$
    При доказательстве мы воспользуемся известным соотношением (см. п. 5 § 2 гл. 10) $$\frac { 1 }{ \pi } \intop_{ 0 }^{ +\infty }{ \frac { \sin { l\zeta } }{ \zeta } d\zeta } =\frac { 1 }{ 2 } \quad \left(10\right).$$ Докажем, например, справедливость соотношения $\left(9\right).$ В силу равенства $\left(10\right),$ можно записать, что $$\frac { f\left(x+0\right) }{ 2 } =\frac { 1 }{ \pi } \intop_{ 0 }^{ +\infty }{ f\left(x+0\right)\frac { \sin { l\zeta } }{ \zeta } d\zeta } .$$
    Поэтому разность между переменной величиной и предполагаемым пределом в соотношении $\left(9\right)$ будет равна
    $${ J }_{ 0,+\infty }=\frac { 1 }{ \pi } \intop_{ 0 }^{ +\infty }{ f\left(x+ \zeta \right)\frac { \sin { l\zeta } }{ \zeta } d\zeta } -\frac { f\left(x+0\right) }{ 2 } =$$
    $$=\frac { 1 }{ \pi } \intop_{ 0 }^{ +\infty }{ \left[ f\left(x+\zeta \right)-f\left(x+0\right) \right] \frac { \sin { l\zeta } }{ \zeta } d\zeta } .\quad\left(11\right)$$
    Таким образом, нужно доказать, что этот интеграл стремится к нулю при $l\rightarrow +\infty.$ Разобьём интервал интегрирования $0\le \zeta <+\infty $ на три:
    $0 < \zeta \le\delta ,$ $\quad \delta \le \zeta \le\Delta ,$ $\quad \Delta \le \zeta <+\infty ;$ тогда интеграл $\left(11\right)$ будет представлен в виде суммы трёх интегралов $$ { J }_{ 0,+\infty }={ J }_{ 0,\delta }+{ J }_{ \delta ,\Delta }+{ J }_{ \Delta ,+\infty }. \quad\left(12\right)$$ После этого будем действовать следующим образом. Сначала, задавшись произвольным $\varepsilon >0,$ докажем, что при всех достаточно малых $\delta>0$ и всех достаточно больших $\Delta >\delta$ будут выполняться неравенства $$\left| { J }_{ 0,\delta } \right| <\frac { \varepsilon }{ 3 }\quad и \quad \left| { J }_{ \Delta,+\infty } \right| <\frac { \varepsilon }{ 3 } \quad \left(13\right)$$ сразу при всех $l\ge 1.$ Затем, фиксировав $\delta$ и $\Delta$ так, чтобы выполнялись неравенства $\left(13\right),$ выберем $l\ge 1$ столь большим, чтобы в силу основной леммы выполнялось неравенство $\left| { J }_{ \delta ,\Delta } \right| <\frac { \varepsilon }{ 3 } .$ Отсюда, в силу $\left(12\right),$ будет следовать, что $\left| { J }_{ 0,+\infty } \right| <\varepsilon $ при всех достаточно больших $l\ge 1.$ Итак, оценим сначала интеграл $${ J }_{ 0,\delta }=\frac { 1 }{ \pi } \intop_{ 0 }^{ \delta }{ \frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } \sin { l\zeta } d\zeta } .$$ При всех достаточно малых $\delta>0$ $$\left| \frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } \right| <\left| { f }_{ + }^{ \prime }\left(x\right) \right| +1\quad \forall \zeta \in \left(0,\delta \right).$$ Следовательно, $$\left| { J }_{ 0,\delta } \right| <\frac { \delta }{ \pi } \left\{ \left| { f }_{ + }^{ \prime }\left(x\right) \right| +1 \right\} <\frac { \varepsilon }{ 3 } \quad\left(14\right)$$ при всех $\delta <\frac { \varepsilon \pi }{ 3\left\{ \left| { f }_{ + }^{ \prime }\left( x \right) \right| +1 \right\} } $ и при всех значениях $l.$ Оценим, далее, интеграл $${ J }_{ \Delta ,+\infty }=\frac { 1 }{ \pi } \intop_{ \Delta }^{ +\infty }{ f\left(x+\zeta \right)\frac { \sin { l\zeta } }{ \zeta } d\zeta } -\frac { f\left(x+0\right) }{ \pi } \intop_{ \Delta }^{ +\infty }{ \frac { \sin { l\zeta } }{ \zeta } d\zeta } .$$ Мы имеем $$\left| { J }_{ \Delta ,+\infty } \right| \le \frac { 1 }{ \pi } \intop_{ \Delta }^{ +\infty }{ \left| f\left(x+\zeta \right) \right| \frac { d\zeta }{ \zeta } } +\frac { \left| f\left(x+0\right) \right| }{ \pi } \left| \intop_{ \Delta }^{ +\infty }{ \frac { \sin { l\zeta } }{ \zeta } d\zeta } \right| \le $$ $$\le \frac { 1 }{ \pi \Delta } \intop_{ -\infty }^{ +\infty }{ \left| f\left(x+\zeta \right) \right| d\zeta } +\frac { \left| f\left(x+0\right) \right| }{ \pi } \left| \intop_{ l\Delta }^{ +\infty }{ \frac { \sin { { \zeta }^{ \ast } } }{ { \zeta }^{ \ast } } } d{ \zeta }^{ \ast } \right| =$$
    $$=\frac { Q }{ \pi \Delta } +\frac { \left| f\left(x+0\right) \right| }{ \pi } \left| \intop_{ l\Delta }^{ +\infty }{ \frac { \sin { { \zeta }^{ \ast } } }{ { \zeta }^{ \ast } } d{ \zeta }^{ \ast } } \right| ,$$ где ${ \zeta }^{ \ast }=l\zeta. \quad\left(15\right)$ Напомним, что, согласно условию $\left(4\right),$ $Q=\int\limits_{ -\infty }^{ +\infty }{ \left| f\left(x\right) \right| dx } <\infty,$ поэтому при всех достаточно больших $\Delta>0$ будет $\frac { Q }{ \pi \Delta } <\frac { \varepsilon }{ 6 } $ сразу для всех $l.$ Далее, так как интеграл $\int\limits_{ 0 }^{ +\infty }{ \frac { \sin { { \zeta }^{ \ast } } }{ { \zeta }^{ \ast } } d{ \zeta }^{ \ast } } $ сходится, то при всех достаточно больших $\Delta>0$ и всех $l\ge 1$ $$\frac { \left| f\left(x+0\right) \right| }{ \pi } \left| \intop_{ l\Delta }^{ +\infty }{ \frac { \sin { { \zeta }^{ \ast } } }{ { \zeta }^{ \ast } } d{ \zeta }^{ \ast } } \right| <\frac { \varepsilon }{ 6 } .$$ Следовательно, в силу $\left(15\right)$ $$\left| { J }_{ \Delta ,+\infty } \right| <\frac { \varepsilon }{ 3 } \quad\left(16\right)$$ при всех достаточно больших $\Delta>0$ и всех $l\ge 1.$ Оценим, наконец, интеграл $${ J }_{ \delta ,\Delta }=\frac { 1 }{ \pi } \intop_{ \delta }^{ \Delta }{ \frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } \sin { l\zeta } d\zeta } .$$ Функция $\frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } $ по переменной $\zeta$ является кусочно-гладкой на отрезке $\delta \le \zeta \le \Delta .$ Поэтому, в силу основной леммы, при всех достаточно больших значениях $l\ge1$ будет выполняться неравенство $$\left| { J }_{ \delta ,\Delta } \right| <\frac { \varepsilon }{ 3 }. \quad\left(17\right)$$ Сопостовляя $\left(14\right), \left(16\right)$ и $\left(17\right),$ получим, что при всех достаточно больших $l\ge1$ $$\left| { J }_{ 0,+\infty } \right| <\varepsilon ,$$ что и требовалось доказать. $\blacksquare$

    [свернуть]

    Замечание. Основная теорема об интеграле Фурье справедлива и при более слабых ограничениях, налагаемых на функцию $f\left(x\right).$ А именно, если абсолютно интегрируемая на всей оси $x$ функция $f\left(x\right)$

    • кусочно-непрерывна на каждом конечном отрезке оси $x$
    • отношение $\left| \frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } \right|$ ограничено при любом фиксированном $x$ для всех достаточно малых $\zeta,$ то основная теорема сохраняет силу.
    Доказательство

    Действительно, доказательство основной теоремы сводится к оценке трёх интегралов: ${ J }_{ 0,\delta },{ J }_{ \delta ,\Delta },{ J }_{ \Delta ,+\infty }$ для ${ J }_{ 0 ,+\infty }.$ Последний из этих трёх интегралов мал при достаточно большом $\Delta,$ в силу абсолютной интегрируемости $f\left(x\right).$ Интеграл ${ J }_{ 0,\delta }$ мал при всех достаточно малых $\delta>0,$ если отношение $\left| \frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } \right| $ ограничено при каждом фиксированном $x$ для всех достаточно малых $\zeta>0.$ В интеграле же $${ J }_{ \delta ,\Delta }=\frac { 1 }{ \pi } \intop _{ \delta }^{ \Delta }{ \frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } \sin { l\zeta } d\zeta } $$ функция $\varphi \left(\zeta \right)= \frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } $ кусочно-непрерывна на отрезке $0<\delta \le \zeta \le \Delta $ при любом фиксированном $x.$ Пусть $\left[ a,b \right] $ — какой-либо сегмент, на котором $\varphi \left(\zeta \right)$ непрерывна, и пусть дано какое угодно $\varepsilon>0.$ Построим такую кусочно-гладкую функцию ${ g }_{ \varepsilon }\left(x\right)$ (как при доказательстве первой теоремы Вейерштрасса), чтобы выполнялось неравенство $$\left| \varphi \left(\zeta \right)-{ g }_{ \varepsilon }\left(\zeta\right) \right| <\frac { \varepsilon }{ 2\left(b-a\right) },\quad 0<\delta \le \zeta \le \Delta .$$ Но тогда $$\left| \int _{ a }^{ b }{ \varphi \left(\zeta \right)\sin { l\zeta } d\zeta } \right| \le \intop _{ a }^{ b }{ \left| \varphi \left(\zeta \right)-{ g }_{ \varepsilon }\left(\zeta\right) \right| d\zeta } +$$ $$+\left| \intop _{ a }^{ b }{ { g }_{ \varepsilon }\left(\zeta \right)\sin { l\zeta } d\zeta } \right| <\frac { \varepsilon }{ 2 } +\frac { \varepsilon }{ 2 } =\varepsilon \quad $$ при всех достаточно больших $l\ge0,$ так как для кусочно-гладкой функции ${ g }_{ \varepsilon }\left(x\right)$ справедлива основная лемма. Разбивая интеграл $ { J }_{ \delta ,\Delta }$ на интервалы по сегментам непрерывности $\varphi \left(\zeta \right),$ получаем, что ${ J }_{ \delta ,\Delta }\rightarrow 0$ при $l\rightarrow +\infty,$ чем и завершается доказательство теоремы.

    [свернуть]

    Литература

    Тестирование. Интеграл Фурье

    После прочтения материала настоятельно рекомендую попробовать силы в несложных тестах для закрепления материала.
    Желаю успехов!

Определение предела сходящейся последовательности

Определение

Пусть $\{x^{(n)}\}$ — последовательность точек метрического пространства $X$. Говорят, что последовательность $\{ x^{(n)} \}$ сходится к точке $x$ и обозначают $\lim \limits_{n \to \infty} x^{(n)} = x$, то есть точка $x$ называется пределом последовательности ${x^{(n)}}$, если $\lim \limits_{n \to \infty} \rho(x^{(n)}, x) = 0$.

Эквивалентное геометрическое определение может быть сформулировано следующим образом.

Определение

Точка $x$ называется пределом последовательности $\{x^{(n)}\}$, если в любой окрестности точки $x \in X$ содержатся все точки последовательности $\{x^{(n)}\}$, за исключением, быть может, конечного их числа, то есть какой бы шар с центром в точке $x$ мы не взяли, в него попадут все точки последовательности $\{x^{(n)}\}$, кроме, быть может, конечного их числа.

Источники

  • Конспект лекций по математическому анализу Лысенко З.М.

Литература