Функции $f(x)$ и $g(x)$ непрерывны на отрезке $\left[0; 1\right]$ и удовлетворяют равенствам
$$\int\limits_{0}^{1} f(x) dx = \int\limits_{0}^{1} g(x) dx = 1$$ и $$\int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)} dx = \sqrt{2} .$$
Докажите, что $f(x) = g(x)$ на отрезке $\left[0; 1\right]$.
Для любой пары неотрицательных чисел $а$ и $b$ справедливо элементарное неравенство $a + b \leqslant \sqrt{2(a^2 + b^2)}$. При этом неравенство обращается в равенство лишь тогда, когда $a = b$. Ввиду этого и условий задачи, можно записать цепочку неравенств $$ 2 \leqslant \int\limits_{0}^{1} (|f(x)| + |g(x)|) dx \leqslant \sqrt{2} \int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)} dx = 2 .$$
Отсюда следует, что функции $f(x)$ и $g(x)$ равны и неотрицательны на отрезке $\left[0; 1\right]$.
Подобным образом читатель может доказать аналогичное утверждение для трех (и более) функций: если $f(x)$, $g(x)$ и $\varphi(x)$ непрерывны на отрезке $\left[0; 1\right]$ и $$\int\limits_{0}^{1} f(x) dx = \int\limits_{0}^{1} g(x) dx = \int\limits_{0}^{1} \varphi(x) = 1 ,$$ а
$$\int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)+\varphi^2(x)} dx = \sqrt{3}, $$ то $f(x) = g(x) = \varphi(x)$ на $\left[0; 1\right]$.
Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b)$. Говорят, что функция $f$ непрерывна в точке $x_0$, если $$\lim\limits_{x \to x_0}f(x) = f(x_0).$$
Замечание. В отличие от определения предела функции $f$ в точке $x_0$, здесь мы требуем, чтобы функция $f$ была определена не только в проколотой окрестности точки $x_0$, а в целой окрестности точки $x_0$. Кроме того, $\lim\limits_{x \to x_0}f(x)$ не просто существует, а равен определенному значению, а именно, $f(x_0)$.
Используя определение предела функции в смысле Коши, определение непрерывности функции $f$ в точке $x_0$ в кванторах можно записать следующим образом: $$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0: \forall x \in (a, b): |x — x_0| < \delta \Rightarrow \Big|f(x) — f(x_0)\Big| < \varepsilon.$$
В этом определении можно не требовать выполнения условия $|x — x_0| > 0$, т. к. при $|x − x_0| = 0$ неравенство $\Big|f(x) − f(x_0)\Big| < \varepsilon$, очевидно, выполнено.
Так как величина $\lim\limits_{x \to x_0}f(x)$ зависит лишь от тех значений, которые функция $f$ принимает в сколь угодно малой окрестности точки $x_0$, то непрерывность – это локальное свойство функции.
В терминах окрестностей определение непрерывности выглядит следующим образом.
Определение. Функция $f$ называется непрерывной в точке $x_0$, если для любой окрестности $V$ точки $f(x_0)$ найдется такая окрестность $U$ точки $x_0$, что для всех $x \in U$ значение $f(x) \in V$, т. е. $f\Big(U \cap (a, b)\Big) \subset V$.
Определение. Функция $f$, определенная на интервале $(a, b)$, называется непрерывной в точке $x_0 \in (a, b)$, если любая последовательность аргументов $\{x_n\}$ $\Big(x_n \in (a, b), x_n \to x_0\Big)$ порождает последовательность значений функции $\{f(x_n)\}$, стремящуюся к $f(x_0)$.
Применяя понятие, одностороннего предела (т. е. предела слева и справа) в точке $x_0$, можно дать определения непрерывности слева (справа) в точке $x_0$. Именно, функция $f$ называется непрерывной слева (справа) в точке $x_0$, если $\lim\limits_{x \to x_0-0}f(x) = f(x_0)$ $\Big(\lim\limits_{x \to x_0+0}f(x) = f(x_0)\Big).$ При этом в определении непрерывности слева достаточно считать, что функция $f$ определена лишь в левой полуокрестности точки $x_0$, т. е. на $(a, x_0]$, а для
непрерывности справа – на $[x_0, b)$.
Легко видеть, что справедливо следующее
Утверждение. Для того чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0.$
Определение. Функция $f$, определенная на интервале $(a, b)$, называется разрывной в точке $x_0 \in (a, b)$, если $f$ не является непрерывной в этой точке.
Итак, функция $f$ является разрывной в точке $x_0$, если выполнено одно из двух следующих условий.
Либо не существует $\lim\limits_{x \to x_0}f(x)$.
Либо предел $\lim\limits_{x \to x_0}f(x)$ существует, но он не равен $f(x_0)$.
Пример 1. $f(x) ≡ C = Const$. Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$, т. к. для любого $x \in \mathbb{R}$ $\Big|f(x) − f(x_0)\Big| = 0$.
Пример 2. $f(x) = x^2$, $-\infty \lt x \lt +\infty$, $x_0 \in \mathbb{R}$. Зададим $\varepsilon > 0$. Тогда из неравенства $$|x^2 — {x_0}^2| \leqslant \Big(|x| + |x_0|\Big)|x − x_0|$$ следует, что при $|x − x_0| < \delta = \min\Big(1, \frac{\varepsilon}{2|x_0| + 1}\Big)$ справедливо неравенство $|x^2 — {x_0}^2| < \varepsilon$, т. е. $\lim\limits_{x \to x_0}x^2 = {x_0}^2$, а значит, функция $f(x) = x^2$ непрерывна в любой точке $x_0 \in \mathbb{R}$.
Пример 3. $f(x) = \sqrt{x}$, $0 \leqslant x \leqslant +\infty$ Если $x_0 \in (0, +\infty)$, то $$\Big|\sqrt{x} — \sqrt{x_0}\Big| = \frac{|x — x_0|}{\sqrt{x} + \sqrt{x-0}} \leqslant \frac{1}{\sqrt{x_0}}|x — x_0| \lt \varepsilon$$ если только $|x − x_0| \lt \delta \equiv \sqrt{x_0} \cdot \varepsilon$. Таким образом, функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 \gt 0$. В точке $x_0 = 0$ можно ставить вопрос о непрерывности справа. Имеем $\Big|\sqrt{x} — \sqrt{0}\Big| = \sqrt{x} \lt \varepsilon$, если только $0 \leqslant x \lt \delta \equiv \varepsilon^2$. Итак, $\lim\limits_{x \to 0+}\sqrt{x} = 0 = \sqrt{0}$, т. е. функция $f(x) = \sqrt{x}$ непрерывна справа в точке $0$.
Пример 4. $f(x) = \sin x$, $-\infty \lt x \lt +\infty$. Пусть $x_0 \in \mathbb{R}$. Тогда $$|\sin x − \sin x_0| = \bigg|2\cos{\frac{x + x_0}{2}}\sin{\frac{x — x_0}{2}}\bigg| \leqslant 2\bigg|\sin{\frac{x — x_0}{2}}\bigg| \leqslant |x — x_0|,$$ где последнее неравенство в этой цепочке следует из доказанного выше неравенства $|\sin t| \leqslant |t|$ ($0 \lt |t| \lt \frac{\pi}{2}$). Можем считать, что $|x − x_0| \lt \pi$. Тогда при $|x − x_0| \lt \delta \equiv \min(\pi, \varepsilon)$ справедливо $|\sin{x} − \sin{x_0}| \lt \varepsilon$, т. е. функция $f(x) = \sin{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$. Аналогично доказываем, что функция $f(x) = \cos{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.
Пример 5. $f(x) = x \cdot \sin{\frac{1}{x}}$ при $x \neq 0$ и $f(0) = 0$. Покажем, что функция $f$ непрерывна в точке $x_0 = 0$. Имеем $f(0) = 0$ и $$\lim\limits_{x \to 0}f(x) = \lim\limits_{x \to 0}x\sin{\frac{1}{x}} = 0$$ (т. к. $\Big|f(x) − 0\Big| = \Big|x\sin{\frac{1}{x}}\Big| \leqslant |x| \lt \varepsilon$, если только $|x − 0| = |x| \lt \delta \equiv \varepsilon$). Итак, $\lim\limits_{x \to x_0}f(x) = f(0)$, так что $f$ непрерывна в точке $0$.
Пример 6. $f(x) = \text{sign}\;x$, $x \in \mathbb{R}$. Если $x_0 \neq 0$, то функция $f$ постоянна в некоторой окрестности точки $x_0$ и, следовательно, непрерывна в этой точке. Если же $x_0 = 0$, то не существует предела функции $f$ при $x \to 0$. Значит, функция $f$ разрывна в точке $0$. Более того,$\lim\limits_{x \to 0+}\text{sign}\; x = 1$, $\lim\limits_{x \to x_0}f(x)\text{sign}\;x = −1$, $\text{sign}\;0 = 0$, так что функция $\text{sign}\; x$ разрывна в точке $0$ как слева, так и справа.
Пример 7. Рассмотрим функцию Дирихле $$\mathcal{D}(x) =
\begin{cases}
1, & \text{если $x \in \mathbb{Q}$;} \\
0, & \text{если $x \in {\mathbb{R} \backslash \mathbb{Q}}$.}
\end{cases}$$ Пусть $x_0 \in \mathbb{R}$. Покажем, что не существует предела функции $\mathcal{D}$ при $x \to x_0$. Для этого выберем последовательность $\{x^\prime\}$ отличных от $x_0$ рациональных чисел, стремящуюся к $x_0$. Тогда $\mathcal{D}(x^\prime_n) = 1$ и, значит, $\lim\limits_{n \to +\infty}\mathcal{D}(x^\prime_n) = 1$. Если же взять последовательность ${x^{\prime\prime}_n}$ отличных от $x_0$ иррациональных чисел, стремящуюся к $x_0$, то получим, что $\mathcal{D}(x^{\prime\prime}_n) = 0$ и $\lim\limits_{n \to +\infty}\mathcal{D}(x^{\prime\prime}_n) = 0$. В силу определения предела функции по Гейне получаем, что функция $\mathcal{D}$ не имеет предела в точке $x_0$. Так как $x_0 \in \mathbb{R}$ – произвольная точка, то это означает, что функция Дирихле разрывна в каждой точке.
Пример 8. $f(x) = x \cdot \mathcal{D}(x)$, $x \in \mathbb{R}$. Функция $f$ разрывна в каждой точке $x_0 \neq 0$. В самом деле, если $\{x^\prime_n\}$ и $\{x^{\prime\prime}_n\}$ соответственно последовательности рациональных и иррациональных отличных от $x_0$ чисел, стремящиеся к $x_0$, то $\lim\limits_{n \to \infty}f(x^{\prime}_n) = x_0$ и $\lim\limits_{n \to \infty}f(x^{\prime\prime}_n) = 0$, так что, в силу определения предела функции по Гейне, функция $f$ не имеет предела в точке $x_0$. Если же $x_0 = 0$, то $\lim\limits_{n \to 0}f(x) = 0 = f(0)$. Действительно, $|f(x)| = |x \cdot \mathcal{D}(x)| \leqslant |x| \lt \varepsilon$, если только $|x − 0| = |x| \lt \delta \equiv \varepsilon$. Это означает, что данная функция непрерывна в единственной точке $x_0 = 0$.
Пример 9. Дана функция $$f(x) =
\begin{cases}
\frac{\sin x}{x}, & \text{если $x \neq 0$;} \\
1, & \text{если $x = 0$.}
\end{cases}$$ Проверить на непрерывность в точке $x_0 = 0$.
Решение
$$\lim\limits_{x \to x_0 — 0}\frac{\sin x}{x} = \lim\limits_{x \to 0 + 0}\frac{\sin x}{x} = 1 = f(x_0)$$ Отсюда следует, что $f(x)$ непрерывна в точке $x_0$, т. к. для того чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0.$
Пример 10. Покажите, что функция $f(x) = \frac{x + 3}{x — 2}$ разрывна в точке $x_0 = 2.$
Решение
Для этого достаточно показать, что предел данной функции при $x \to x_0$ либо не равен значению функции в точке $x_0$, либо не существует. $$\lim\limits_{x \to 2 — 0}\frac{x + 3}{x — 2} = -\infty$$ $$\lim\limits_{x \to 2 + 0}\frac{x + 3}{x — 2} = +\infty$$ Т. к. левосторонний и правосторонний пределы $f(x)$ не совпадают, то предела функция в точке $x_0$ не имеет, следовательно она разрывна в этой точке.
Литература
З. М. Лысенко, Конспект по математическому анализу, Курс 1, Семестр 1
Тест по теме: «Непрерывные функции. Определение и примеры.»
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 5
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
Математический анализ0%
максимум из 5 баллов
Место
Имя
Записано
Баллы
Результат
Таблица загружается
Нет данных
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Количество баллов: 1
Выберите правильное определение непрерывности функции $latex f$ в точке $latex x_0$ в кванторах.
Правильно
Неправильно
Задание 2 из 5
2.
Количество баллов: 1
Выберите такие функции $latex f(x)$, что $latex \lim\limits_{x \to x_0}f(x) = f(x_0)$.
Правильно
Неправильно
Задание 3 из 5
3.
Количество баллов: 1
Дополните предложение.
Функция, определенная на некотором интервале, называется (разрывной, не непрерывной, разрывная, не неприрывной, не непрерывная, расрывной, разрывнной) в точке, если данная точка принадлежит заданному интервалу, а сама функция не является непрерывной в этой точке.
Правильно
Неправильно
Задание 4 из 5
4.
Количество баллов: 1
Выберите достаточные условия того, что функция $latex f$ является разрывной в точке $latex x_0$.
Правильно
Неправильно
Задание 5 из 5
5.
Количество баллов: 1
Как называется функция $latex f$, определенная на интервале $latex (a, b)$, если любая последовательность аргументов $latex \{x_n\}$ ($latex x_n \in (a, b)$, $latex x_n \to x_0$) порождает последовательность значений функции $latex \{f(x_n)\}$, стремящуюся к $latex f(x_0)$.
Правильно
Неправильно
Таблица лучших: Непрерывные функции. Определение и примеры
Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b)$. Говорят, что функция $f$ непрерывна в точке $x_0$, если
$$\lim_{x \to x_0} f(x) = f (x_0).$$
Замечание. В отличие от определения предела функции $f$ в точке $x_0$, здесь мы требуем, чтобы функция $f$ была определена не только в проколотой окрестности точки $x_0$, а в целой окрестности точки $x_0$. Кроме того, $\displaystyle \lim_{x \to x_0} f(x)$ не просто существует, а равен определенному значению, а именно, $f(x_0)$.
Используя определение предела функции в смысле Коши, определение непрерывности функции $f$ в точке $x_0$ в кванторах можно записать следующим образом:
$$\forall \varepsilon > 0 \space \exists \delta = \delta (\varepsilon) > 0 : \forall x \in (a, b) : |x−x_0| < \delta \Rightarrow \\ \Rightarrow |f(x)−f(x_0)| < \varepsilon.$$
В этом определении можно не требовать выполнения условия $|x−x_0| > 0$, т. к. при $|x−x_0| = 0$ неравенство $|f(x)−f(x_0)| < \varepsilon$, очевидно, выполнено.
Так как величина $\displaystyle \lim_{x \to x_0} f(x)$ зависит лишь от тех значений, которые функция $f$ принимает в сколь угодно малой окрестности точки $x_0$, то непрерывность — это локальное свойство функции.
В терминах окрестностей определение непрерывности выглядит следующим образом.
Определение. Функция $f$ называется непрерывной в точке $x_0$, если для любой окрестности $V$ точки $f(x_0)$ найдется такая окрестность $U$ точки $x_0$, что для всех $x \in U$ значение $f(x) \in V$ , т. е. $f(U \cap (a, b)) \subset V$.
Определение. Функция $f$, определенная на интервале $(a, b)$, называется непрерывной в точке $x_0 \in (a, b)$, если любая последовательность аргументов $\{x_n\} \space (x_n \in (a, b), x_n \to x_0)$ порождает последовательность значений функции $\{f(x_n)\}$, стремящуюся к $f(x_0)$.
Применяя понятие одностороннего предела (т. е. предела слева и справа) в точке $x_0$, можно дать определения непрерывности слева (справа) в точке $x_0$. Именно, функция $f$ называется непрерывной слева (справа) в точке $x_0$, если $\displaystyle \lim_{x \to x_0−0} f(x) = f(x_0) (\lim_{x \to x_0+0} f(x) = f(x_0))$. При этом в определении непрерывности слева достаточно считать, что функция $f$ определена лишь в левой полуокрестности точки $x_0$, т. е. на $(a, x_0]$, а для непрерывности справа — на $[x_0, b)$.
Легко видеть, что справедливо следующее
Утверждение. Для того, чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0$.
Определение. Функция $f$, определенная на интервале $(a, b)$, называется разрывной в точке $x_0 \in (a, b)$, если $f$ не является непрерывной в этой точке.
Итак, функция $f$ является разрывной в точке $x_0$, если выполнено одно из двух следующих условий.
1. Либо не существует $\displaystyle \lim_{x \to x_0} f(x)$.
2. Либо предел $\displaystyle \lim_{x \to x_0} f(x)$ существует, но он не равен $f(x_0)$.
Пример 1. $f(x) \equiv C = Const$. Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$, т. к. для любого $x \in \mathbb{R} \space |f(x)−f(x_0)| = 0$.
Пример 2. $f(x) = x^2, −\infty < x < +\infty, x_0 \in \mathbb{R}$. Зададим $\varepsilon > 0$. Тогда из неравенства
$$|x^2-x_0^2| \leq (|x|+|x_0|)|x-x_0|$$
следует, что при $|x−x_0| < \delta = \min{\Bigr(1, \frac{\varepsilon}{2|x_0|+1}\Bigl)}$ справедливо неравенство $|x^2-x_0^2| < \varepsilon$, т. е. $\displaystyle \lim_{x \to x_0} x^2 = x_0^2$, а значит, функция $f(x) = x^2$ непрерывна в любой точке $x_0 \in \mathbb{R}$.
Пример 3. $f(x) = \sqrt{x}, \space 0 \leq x < +\infty$. Если $x_0 \in (0, +\infty)$, то
$$|\sqrt{x}-\sqrt{x_0}| = \frac{|x-x_0|}{\sqrt{x}+\sqrt{x_0}} \leq \frac{1}{\sqrt{x_0}} |x-x_0| < \varepsilon,$$
если только $|x-x_0| < \delta \equiv \sqrt{x_0} \cdot \varepsilon$. Таким образом, функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 > 0$. В точке $x_0 = 0$ можно ставить вопрос о непрерывности справа. Имеем $|\sqrt{x}-\sqrt{0}| = \sqrt{x} < \varepsilon \space$, если только $0 \leq x < \delta \equiv \varepsilon^2$. Итак, $\displaystyle \lim_{x \to 0+} \sqrt{x} = 0 = \sqrt{0}$, т. е. функция $f(x) = \sqrt{x}$ непрерывна справа в точке $0$.
Пример 4. $f(x)=\sin{x}, -\infty < x < +\infty$. Пусть $x_0 \in \mathbb{R}$. Тогда
$$|\sin{x}−\sin{x_0}| = \Bigg|2\cos{\frac{x+x_0}{2}}\sin{\frac{x-x_0}{2}}\Bigg| \leq \\ \leq 2\Bigg|\sin{\frac{x-x_0}{2}}\Bigg| \leq |x−x_0|,$$
где последнее неравенство в этой цепочке следует из доказанного выше неравенства $|\sin{t}| \leq |t| \space (0 < |t| < \pi/2)$. Можем считать, что $|x−x_0| < \pi$. Тогда при $|x−x_0| < \delta \equiv \min{(\pi, \varepsilon)}$ справедливо $|\sin{x}−\sin{x_0}| < \varepsilon$, т. е. функция $f(x) = \sin{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.
Аналогично доказываем, что функция $f(x) = \cos{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.
Пример 5. $f(x) = x \cdot \sin{\frac{1}{x}}$ при $x \neq 0$ и $f(0) = 0$. Покажем, что функция $f$ непрерывна в точке $x_0= 0$. Имеем $f(0) = 0$ и
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin{\frac{1}{x}} = 0$$
(т. к. $|f(x)−0| = |x \sin{\frac{1}{x}}| \leq |x| < \varepsilon$, если только $|x−0| = |x| < \delta \equiv \varepsilon$). Итак, $\displaystyle \lim_{x \to 0} f(x) = f(0)$, так что $f$ непрерывна в точке $0$.
Пример 6. $f(x) = \operatorname{sign} x, x \in R$. Если $x_0 \neq 0$, то функция $f$ постоянна в некоторой окрестности точки $x_0$ и, следовательно, непрерывна в этой точке. Если же $x_0 = 0$, то не существует предела функции $f$ при $x \to 0$. Значит, функция $f$ разрывна в точке $0$. Более того, $\displaystyle \lim_{x \to 0+} \operatorname{sign} x = 1, \lim_{x \to 0−} \operatorname{sign} x = −1, \operatorname{sign} 0 = 0$, так что функция $\operatorname{sign} x$ разрывна в точке $0$ как слева, так и справа.
Пример 7. Рассмотрим функцию Дирихле
$$\begin{equation*}D(x) = \begin{cases} 1, \quad x \in \mathbb{Q}, \\ 0, \quad x \in \mathbb{R \setminus Q}. \end{cases} \end{equation*}$$
Пусть $x_0 \in \mathbb{R}$. Покажем, что не существует предела функции $D$ при $x \to x_0$. Для этого выберем последовательность $\{x^\prime_n\}$ отличных от $x_0$ рациональных чисел, стремящуюся к $x_0$. Тогда $D(x^\prime_n) = 1$ и, значит, $\displaystyle \lim_{n \to \infty} D(x^\prime_n) = 1$. Если же взять последовательность $\{x^{\prime\prime}_n\}$, отличных от $x_0$ иррациональных чисел, стремящуюся к $x_0$, то получим, что $D(x^{\prime\prime}_n) = 0$ и $\displaystyle \lim_{n \to \infty} D(x^{\prime\prime}_n) = 0$. В силу определения предела функции по Гейне получаем, что функция $D$ не имеет предела в точке $x_0$. Так как $x_0 \in \mathbb{R}$ — произвольная точка, то это означает, что функция Дирихле разрывна в каждой точке.
Пример 8. $f(x) = x \cdot D(x), \space x \in \mathbb{R}$. Функция $f$ разрывна в каждой точке $x_0 \neq 0$. В самом деле, если $\{x^\prime_n\}$ и $\{x^{\prime\prime}_n\}$ соответственно последовательности рациональных и иррациональных отличных от $x_0$ чисел, стремящиеся к $x_0$, то $\displaystyle \lim_{n \to \infty} f(x^\prime_n) = 0$ и $\displaystyle \lim_{n \to \infty} f(x^{\prime\prime}_n) = 0$, так что, в силу определения предела функции по Гейне, функция $f$ не имеет предела в точке $x_0$. Если же $x_0 = 0$, то $\displaystyle \lim_{x \to 0} f(x) = 0 = f(0)$. Действительно, $|f(x)| = |x \cdot D(x)| \leq |x| < \varepsilon$, если только $|x−0| = |x| < \delta \equiv \varepsilon$. Это означает, что данная функция непрерывна в единственной точке $x_0 = 0$.
Примеры решения задач
Пусть функция $f$ определена в окрестности точки $x_0$, кроме самой точки $x_0$. Доопределить функцию $f$, задав $f(x_0)$ так, чтобы получившаяся функция была непрерывна в точке $x_0$, если:
$\displaystyle f(x) = \frac{x^2-1}{x+1}, \space x_0 = -1$.
Решение
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(x-1)(x+1)}{x+1} = \lim_{x \to -1} (x-1) = -2$$
Таким образом, положим $\displaystyle f(-1) = \lim_{x \to -1} f(x) = -2$. Значит, функция непрерывна в точке $x_0 = -1$.
$\displaystyle f(x) = \frac{\sqrt{1+x}-1}{x}, \space x_0 = 0$.
Решение
Воспользовавшись таблицей эквивалентных, получим:
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(1+x)^{\frac{1}{2}}-1}{x} \backsim \lim_{x \to 0} \frac{\frac{1}{2}x}{x} = \frac{1}{2}$$
Таким образом, положим $\displaystyle f(0) = \lim_{x \to 0} f(x) = \frac{1}{2}$. Значит, функция непрерывна в точке $x_0 = 0$.
$\displaystyle f(x) = x\cot{x}, \space x_0 = 0$.
Решение
Воспользовавшись таблицей эквивалентных, получим:
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x\frac{\cos{x}}{\sin{x}} \backsim \lim_{x \to 0} x\frac{\cos{x}}{x} = 1$$
Таким образом, положим $\displaystyle f(0) = \lim_{x \to 0} f(x) = 1$. Значит, функция непрерывна в точке $x_0 = 0$.
Непрерывные функции
Лимит времени: 0
Навигация (только номера заданий)
0 из 5 заданий окончено
Вопросы:
1
2
3
4
5
Информация
Проверьте, насколько хорошо вы усвоили эту тему и закрепите свои знания по ней, пройдя тест.
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 5
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Математический анализ0%
Ваш результат был записан в таблицу лидеров
Загрузка
максимум из 5 баллов
Место
Имя
Записано
Баллы
Результат
Таблица загружается
Нет данных
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Количество баллов: 1
Доопределить функцию $\displaystyle f(x) = \frac{x^3-1}{x^2-1}$ в точке $x_0 = 1$ до непрерывной, после чего узнать ее значение в этой точке.
Задание 2 из 5
2.
Количество баллов: 1
Сформулируйте определение непрерывности функции $f$ в точке $x_0$ в терминах кванторов.
$\forall \varepsilon > 0$
$\exists \delta = \delta ( \varepsilon ) > 0 :$
$\forall x \in (a, b) :$
$|x − x_0| < \delta \Rightarrow$
$|f(x) − f(x_0)| < \varepsilon$
Задание 3 из 5
3.
Количество баллов: 1
Дополните следующее утверждение.
Для того, чтобы функция f была непрерывной в некоторой точке x, необходимо и достаточно, чтобы f (была непрерывной слева и справа) в этой точке.
Задание 4 из 5
4.
Количество баллов: 1
Выберите $2$ условия, при выполнении хотя бы одного из которых, функция $f$ является разрывной в точке $x_0$.
Задание 5 из 5
5.
Количество баллов: 1
Сперва доопределив функцию $\displaystyle f(x) = \frac{1-\cos{x}}{x^2}$ до непрерывной в точке $x_0 = 0$, запишите ее значение в этой точке в виде правильной или десятичной дроби (без целой части).
Пусть [latex]K[/latex] — компакт в [latex]\mathbb{R}^{n}[/latex] и функция [latex]f: K\rightarrow \mathbb{R}^{m}[/latex] непрерывна на [latex]K[/latex]. Тогда эта функция ограничена на [latex]K[/latex].
Доказательство
В силу непрерывности [latex]f[/latex], для любого [latex]x\in K[/latex] найдётся окрестность [latex]U_{x}[/latex], такая что функция [latex]f[/latex] ограничена на множестве [latex]U_{x}[/latex], то есть для каждого [latex]y\in K \cap U_{x}[/latex] справедливо неравенство [latex]\begin{Vmatrix} f(y) \end{Vmatrix}\leq M_{x}[/latex], где [latex]M_{x}[/latex] зависит от [latex]x[/latex]. Совокупность открытых шаров [latex]U_{x}[/latex] образует открытое покрытие компактного множества [latex]K[/latex]. В силу компактности, из него можно выделить конечное подпокрытие [latex]U_{x_{1}}, …, U_{x_{p}}[/latex]. Этим шарам соответствуют числа [latex]M_{x_{1}}, …, M_{x_{p}}[/latex]. На каждом и этих шаров функция [latex]f[/latex] ограничена этим числом. Пускай [latex]M=\max_{1\leq i\leq p}M_{x_{i}}[/latex]. Тогда для любого [latex]x\in K[/latex] получим, что [latex]\begin{Vmatrix} f(x) \end{Vmatrix}\leq M[/latex].
Пусть функция [latex]f: \mathbb{R}\rightarrow \mathbb{R}[/latex] непрерывна на [latex]\left[a, b \right][/latex]. По первой теореме Вейерштрасса эта функция ограничена на [latex]\left[a, b \right][/latex].
Вторая теорема Вейерштрасса
Пусть [latex]f: K\rightarrow \mathbb{R}[/latex] — действительная непрерывная функция на компакте [latex]K\subset \mathbb{R}^{n}[/latex]. Тогда на этом множестве функция [latex]f[/latex] достигает своей верхней и нижней границы, то есть существуют такие [latex]x^{‘}, x^{»}\in K[/latex], что
Пусть [latex]f: E\rightarrow \mathbb{R}[/latex], где [latex]E\subset \mathbb{R}^{n}[/latex]. Функция [latex]f[/latex] называется ограниченной сверху на множестве [latex]E[/latex], если существует такая постоянная [latex]M[/latex], то для всех [latex]x\in E[/latex] справедливо неравенство [latex]\begin{Vmatrix} f(x) \end{Vmatrix}\leq M[/latex]. Каждое такое число [latex]M[/latex] называется верхней границей функции [latex]f[/latex], а наименьшая из всех верхних границ называется точной верхней границей или верхней гранью функции [latex]f[/latex] и обозначается [latex]\sup_{x\in E}f\left(x \right)[/latex].
Пойдём от противного. Допустим, верхняя грань не достигается, то есть для каждого [latex]x\in K[/latex] справедливо неравенство [latex]f(x)<M[/latex], где [latex]M[/latex] — верхняя грань функции [latex]f[/latex] на [latex]K[/latex].
Рассмотрим функцию [latex]\varphi (x)=\frac{1}{M-f(x)}[/latex]. Эта функция положительна и непрерывна в каждой точке [latex]x\in K[/latex]. По ранее доказанной первой теореме Вейерштрасса она ограничена, то есть существует такое число [latex]\mu >0[/latex], что [latex]\varphi (x)\leq \mu [/latex] для любого [latex]x\in K[/latex]. Это означает, что [latex]\frac{1}{M-f(x)}\leq \mu[/latex], или, что то же самое, [latex]f(x)\leq M-\frac{1}{\mu}(x\in K)[/latex]. Следовательно, число [latex]M-\frac{1}{\mu}[/latex] является верхней границей для функции [latex]f[/latex]. Но так как [latex]\mu >0[/latex], то это противоречит тому, что [latex]M[/latex] является верхней гранью функции [latex]f[/latex], то есть наименьшей из всех верхних границ.
Аналогично теорема доказывается и для нижней грани.
Пусть функция [latex]f: \mathbb{R}\rightarrow \mathbb{R}[/latex] непрерывна на [latex]\left[a, b \right][/latex]. Тогда на этом множестве функция [latex]f[/latex] достигает своей верхней и нижней граней [latex]M=f(x^{»})=\sup_{x\in E}f\left(x \right)[/latex], [latex]m=f(x^{‘})=\inf_{x\in E}f\left(x \right)[/latex].
Пример
Пусть [latex]f(x,y)=x^{5}+y^{4}+2x^{3}y^{2}+1[/latex]. Будет ли [latex]f[/latex] ограничена на [latex]\left[5, 7 \right]\times\left[8,9 \right][/latex]?
Спойлер
[latex]\left[5, 7 \right]\times\left[8,9 \right][/latex] — компактное множество (оно замкнуто и ограничено). [latex]f(x,y)=x^{5}+y^{4}+2x^{3}y^{2}+1[/latex] — непрерывна как композиция непрерывных функций.
Следовательно, по первой теореме Вейерштрасса [latex]f[/latex] ограничена на [latex]\left[5, 7 \right]\times\left[8,9 \right][/latex].
Тест на знание теорем Вейерштрасса о непрерывных функциях на компакте
Лимит времени: 0
Навигация (только номера заданий)
0 из 2 заданий окончено
Вопросы:
1
2
Информация
Тест поможет понять, как хорошо вы усвоили приведённый выше материал.
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 2
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
максимум из 2 баллов
Место
Имя
Записано
Баллы
Результат
Таблица загружается
Нет данных
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
С ответом
С отметкой о просмотре
Задание 1 из 2
1.
Заполните пропуски.
Если функция $f$ является непрерывной на множестве $R$, то она (не всегда) (всегда/не всегда/никогда не) ограничена на $R$.
Если функция $f$ является непрерывной на отрезке $[a,b]$, то её верхней границей (не всегда) (всегда/не всегда/никогда не) является один из концов этого отрезка.
Задание 2 из 2
2.
Возможно ли, чтобы непрерывная функция на компакте достигала только своей верхней грани либо только нижней?
Если [latex]f\in C[a;b][/latex] и [latex]f[/latex] строго возрастает на [latex]I = [a;b][/latex], то на [latex]E = [f(a),f(b)][/latex] определена функция [latex]x=g(y)[/latex], которая будет обратной к [latex]f[/latex], непрерывной на [latex][f(a), f(b)][/latex] и строго возрастающей на [latex][a;b][/latex].
Если [latex]f\in C[a;b][/latex] и [latex]f[/latex] строго убывает на [latex][a;b][/latex], то на [latex][f(b), f(a)][/latex] определена функция [latex]x=g(y)[/latex], которая будет обратной к [latex]f[/latex], непрерывной на [latex][f(b), f(a)][/latex] и строго убывающей на [latex][a;b][/latex].
Доказательство:
Предположим, что функция [latex]f[/latex] строго возрастает на отрезке [latex]I[/latex].
По следствию из 2-ой теоремы Коши о промежуточном значении непрерывных функций область значений [latex]E[/latex] непрерывной функции [latex]f[/latex] тоже есть отрезок.
В силу строгого возрастания функции [latex]f[/latex] для каждого [latex]y\in E[/latex] существует единственная точка [latex]x\in I[/latex] такая, что [latex]f(x)=y[/latex].
Следовательно, для функции [latex]f[/latex] существует обратная функция [latex]f^{-1}[/latex], определенная на отрезке [latex]E[/latex], имеющая множество значений [latex]I[/latex].
Покажем, что [latex]f^{-1}[/latex] строго возрастает на [latex]E[/latex].
Пусть [latex]y_{1}[/latex] и [latex]y_{2}[/latex] — две произвольные точки из [latex]E[/latex] такие, что [latex]y_{1}<y_{2}[/latex], и прообразами этих точек будут точки [latex]x_{1}[/latex] и [latex]x_{2}[/latex]. [latex]f^{-1}(y_{1})=x_{1}[/latex] и [latex]f^{-1}(y_{2})=x_{2}[/latex].
Поскольку [latex]f[/latex] — строго возрастающая функция, то неравенство [latex]y_{1}=f(x_{1})<f(x_{2})=y_{2}[/latex] возможно тогда и только тогда, когда [latex]x_{1}<x_{2}[/latex] или, что то же самое, когда [latex]f^{-1}(y_{1})<f^{-1}(y_{2})[/latex].
В силу произвольности [latex]y_{1} < y_{2}[/latex] делаем вывод, что функция [latex]f^{-1}[/latex] строго возрастает на множестве [latex]E[/latex].
Для случая, когда [latex]f[/latex] строго убывает, теорема доказывается аналогично.
Источники
Лысенко З.М. Конспект лекций по курсу математического анализа. (Тема «Свойства функций непрерывных на отрезке»).