Виды отображений. Распознавание свойств отображений. Композиция отображений. Обратимость. Примеры

Материал лекций по теме «Отображения, типы отображений, тождественное отображение»

Рассмотрим пример, в котором заданное соответствие не является отображением.

Задача №1
Условие задачи:
Задано $f(u) =\left | \frac{ u(u+1)(u+2)}{3} \right|$, $U=\mathbb Z$, $V=\mathbb N$. Определить, будет ли $f: U \rightarrow V$ отображением.

Решение

Данное соответствие будет отображением, если $\forall u \in U$ существует образ. Казалось бы, каким бы ни было $u$, произведение трех последовательных чисел всегда будет делиться на 3. Однако, при:

$\begin{matrix} u_1 = 0 & f(u_1) = 0 \\ u_2 = -1 & f(u_2) = 0 \\ u_3 = -2 & f(u_3) = 0 \end{matrix}$

$\Rightarrow$ Не все прообразы имеют образы, т.к. $0 \notin \mathbb N$

$\Rightarrow$ Данное соответствие не является отображением.

[свернуть]

Рассмотрим задачи, в которых определим вид отображения и исследуем его на обратимость.

Задача №2
Условие задачи:
Заданы $U = \mathbb Z$, $V = \mathbb N$, $f(u) = u^2+2$, $f(u): U \rightarrow V$. Определить вид этого отображения и исследовать на обратимость.

Решение

Проверим, будет ли это отображение инъективным. Отображение инъективно, если для $\forall v \in V$ существует не более одного прообраза:

$\begin{matrix} u_1 = -1 & f(u_1) = 3 \\ u_2 = 1 & f(u_2) = 3 \end{matrix}$

$\Rightarrow$ Один из образов имеет более одного прообраза. Отображение не инъективно.

Проверим, будет ли отображение сюръективно. Отображение сюръективно, если каждый элемент множества $V$ является образом.

$5 \in V$, но $\nexists u \in U$ такого, что $f(u) = 5$. Т.е. хотя бы один из элементов множества $V$ не является образом.

$\Rightarrow$ Отображение не сюръективно.

Таким образом получили, что данное отображение не инъективно и не сюръективно.

Теперь исследуем отображение на обратимость. Для этого воспользуемся критерием обратимости, согласно которому отображение обратимо $\Leftrightarrow$ когда оно биективно. Поскольку отображение не иъективно и не сюръективно, оно биективным не является, а, следовательно, не обратимо.

[свернуть]

Задача №3
Условие задачи:
Заданы $U=\left[ -\frac{\pi}{2}; \frac{\pi}{2}\right]$, $V=\left[ -1; 1\right]$, $f: U \rightarrow V$, $f(u) = \sin{u}$. Определить вид отображения и исследовать на обратимость.

Решение

Определим вид отображения. Это отображение является инъективным, поскольку $\forall v \in V$ имеет не более одного прообраза. Это отображение также является сюръективным, поскольку $\forall v \in V$ является образом.

$\Rightarrow$ Отображение биективно.

Исследуем отображение на обратимость. Для этого, воспользуемся критерием обратимости. Поскольку отображение биективно, то, согласно критерию, оно обратимо. Действительно, для данного отображения существует обратное: $f^{-1}=\arcsin{u}$.

[свернуть]

Задача №4
Условие задачи: Заданы $f: \mathbb Q \rightarrow \mathbb Q$, $g: \mathbb Q \rightarrow \mathbb Q$, $f(u)=2u$, $g(u)=\frac{u}{2}$. Определить, обладает ли композиция этих отображений свойством коммутативности.

Решение

Проверим значение $(g \circ f)(u)$:

$(g \circ f)(u)=g(f(u))=g(2u)=u$

Проверим значение $(f \circ g)(u)$:

$(f \circ g)(u)=f(g(u))=f(\frac{u}{2})=u$

Получили, что $f \circ g = g \circ f$. Следовательно, композиция этих отображений обладает свойством коммутативности.

[свернуть]

Литература

  • Белозеров Г.С. Конспект лекций по линейной алгебре
  • Кострикин А.И. Введение в алгебру. Часть 1, ФИЗМАТЛИТ, 2001г., стр. 35-38

Виды отображений. Обратимость

Тест

Композиция биективных отображений

Определение 1

Отображение $\large f:X \to Y$ называется биекцией и обозначается $\large f:X \leftrightarrow Y$, если оно:

  1.  Переводит элементы множества $X$ в разные элементы множества $Y$ (т.е. выполняется взаимно однозначное отображение — инъекция):
    • $\forall x_{1} \in X$, $\forall x_{2} \in X$, $f(x_{1})=f(x_{2})\Rightarrow x_{1}=x_{2}$.
  2. Любой элемент из $Y$ имеет свой прообраз (т.е. выполняется сюръекция):
    • $\forall y \in Y$, $ \exists $ $x \in X$, $f(x)=y$.

Пример:

  • Изобразим биективное отображение $\large f$, где $f:A \to B$:

    Graphic2
  • Для композиции $g \circ f $, где $f:A \to B,\quad g:B \to C$, рисунок будет выглядеть так:

    Graphic3

Определение 2

Единичным отображением $e_{X}:X \to X$ называется отображение, переводящие каждый элемент $x \in X$ в себя.

Теорема

Пусть $f: X \to Y$, $h: Y \to Z$ — биективные отображения. Тогда биективна и их композиция $ h \circ f$, причем:

$$ (h \circ f)^{-1}=f^{-1} \circ h^{-1}$$
Доказательство:
Биективность $f$ влечёт существование и биективность $f^{-1}$.
Из условия существования обратного отображения для биективных отображений следует:
$$ \left.\begin{aligned} f\circ f^{-1}=e_{Y} \\ f^{-1}\circ f=e_{X}\end{aligned}\right\}
\Rightarrow {(f^{-1})}^{-1}=f$$
Далее существуют отображения:
$f^{-1}: Y\to X \quad h^{-1}: Z \to Y $
$f^{-1}\circ h^{-1}:Z\to X$
Из равенств
$(h\circ f)(f^{-1}\circ h^{-1})=\big( (h\circ f)\circ f^{-1}\big)\circ h^{-1}=\big(h \circ (f\circ f^{-1})\big) \circ h^{-1}=$
$$=h \circ h^{-1}=e_{Z}$$
$(f^{-1} \circ h^{-1})\circ(h \circ f)= f^{-1}\circ \big(h^{-1} \circ (h \circ f) \big)=f^{-1}\circ \big((h^{-1}\circ h) \circ f\big)=$
$$=f^{-1} \circ f=e_{X}$$
вытекает, что $f^{-1}\circ h^{-1}$ — обратное отображение к $h \circ f$.

$\blacksquare$

Список литературы:

  1. Кострикин А. И. Введение в алгебру. — М.: Наука, 1977. стр. 37-38 стр.
  2. Фейс К. Алгебра: кольца, модули и категории. Том 1 — М.: «Мир», 1977. — 40 стр.
  3. Н. К. Верещагин, А. Шень. Часть 1. Начала теории множеств. Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М.: МЦНМО, 2002. — 128 стр.

Тест на тему: «Композиция биективных отображений»

Композиция отображений, свойство ассоциативности

Определение 1
Композицией отображений $f:U \to V$ и $g:V \to W$ называется такое отображение $ h:U \to W $ $ h = g \circ f $, что $ \forall u \in U $ $ h(u)=(g \circ f)(u)=g(f(u))=w $.
$\circ$ — символ композиции.

Определение 2
Бинарная операция «$*$» на $A$(непустом множестве) обладает свойством ассоциативности, если $\forall a,b,c \in A$ верно равенство $(a*b)*c=a*(b*c)$.

Лемма
Композиция отображений обладает свойством ассоциативности. То-есть $\forall f,g,h (f \circ g)\circ h= f\circ (g\circ h)$, где $f:W\to Q$, $g:V\to W$, $h:U\to V$, если левая и правая части существуют.

Доказательство
Нужно доказать, что $\forall f,g,h $ $ (f \circ g)\circ h=f\circ (g\circ h)$, где $f:W\to Q$, $g:V\to W$, $h:U\to V$.
$\forall u \in U $ $ [(f\circ g)\circ h](u)=(f\circ g)(h(u))=f(g(h(u)))$ и $\forall u \in U $ $ [f\circ (g\circ h)](u)=f ((g\circ h)(u))=f(g(h(u)))$, получаем что левая и правая части равны, что и доказывает теорему.

Пример 1
Пусть $f:\mathbb{R}^* \to \mathbb{R}^+$, $g:\mathbb{R}^+ \to \mathbb{R}$ и $f(u)=u^2$, $h(u)=\log{v}$, где $u\in \mathbb{R}^*$, $v\in \mathbb{R}^+$, тогда $h(u)=(g\circ f)(u)=\log{u^2}$, где $h:\mathbb{R}^* \to \mathbb{R}$.

Пример 2
Пусть $f:\mathbb{R} \to \mathbb{R}$, $g:\mathbb{R} \to \mathbb{R}^*$, $h:\mathbb{R}^* \to \mathbb{R}^+$ и $f(u)=2u, g(v)=v^2, h(w)=2^w$, где $u,v \in \mathbb{R}$, $w \in \mathbb{R}^*$, тогда $t_1(u)=(h\circ g)(u)=2^{u^2}, t_2(u)=((h \circ g)\circ f)(u)=2^{(2u)^2}$, где $t_2:\mathbb{R} \to \mathbb{R}^+$ и $t_3(u)=(g \circ h)(u)=(2u)^2$, $t_4(u)=(h\circ (g\circ f))(u)=2^{(2u)^2}$, где $t_4:\mathbb{R} \to \mathbb{R}^+$. Как видим области определений, области значений и законы отображений совпадают, поэтому они равны, то-есть $t_2=t_4$, $ (h \circ g)\circ f=h\circ (g\circ f)$.

Литература

Композиция отображений, свойство ассоциативности.

Тест на тему: «Композиция отображений, свойство ассоциативности.»


Таблица лучших: Композиция отображений, свойство ассоциативности.

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных