Processing math: 100%

Конечномерность

Определение 1. Пусть линейное пространство называется конечномерным, если существует такая константа MN, так что любая линейно независимая система (далее ЛНЗ) содержит не более M векторов. В противном случае пространство называется бесконечномерным.

Замечание. Нулевое пространство будем считать конечномерным.

Пример 1. Бесконечномерным пространством является (R[x],R). Рассмотрим систему векторов 1,x,x2,,xn. Это система ЛНЗ, так как из равенства α01+α1x+α2x2++αkxk=0 следует, что α0=α1=α2==αk=0. Так как k произвольно, то не существует ограничения M.

Пример 2. Пусть X — конечномерное пространство. Рассмотрим в нем ЛНЗ систему, содержащую максимальное число векторов: x1,x2,,xm. Дополняя эту систему произвольным векторм y, получаем уже линейно зависимую систему: x1,x2,,xm,y. Тогда вектор y линейно выражается через исходную систему, а именно: y=α1x1+α2x2++αmxm.

Лемма 1. Каждое подпространство конечномерного пространства в свою очередь конечномерно.

Лемма 2. Каждое подпространство есть линейная оболочка некоторой своей системы.

Конечномерность

Тест для проверки знаний по теме «Конечномерность».

Литература

  1. Личный конспект, составленный на основе лекций Белозерова Г.С..
  2. Воеводин В.В. Линейная алгебра М.: Наука, 1980.-400 с. (стр. 44-47)

Изоморфизм линейных пространств. Критерий изоморфности. Применение понятия изоморфизма к решению задач.

Спойлер

ПРИМЕР

Любой геометрический радиус-вектор плоскости, представим в виде:
[latex] x = ix_1 + jx_2[/latex]
svg111
При этом, если [latex] x = ix_1 + jx_2[/latex], [latex] y = iy_1 + jy_2[/latex], то
[latex] x + y = (x_1 + y_1)i +(x_2 + y_2)j[/latex] и [latex] \alpha x = (\alpha x_1)i + (\alpha x_2)j[/latex].
В результате устанавливаем взаимно однозначное соответствие [latex] x \Leftrightarrow (x_1, x_2)[/latex], соответствие между пространствами геометрических радиусов-векторов плоскости и двумерных арифметических векторов. Очевидно, оно будет изоморфизмом данных пространств, так как
если [latex] x \Leftrightarrow (x_1, x_2)[/latex], [latex] y \Leftrightarrow (y_1, y_2)[/latex], то [latex] x + y \Leftrightarrow (x_1 + y_1, x_2 + y_2)[/latex] и [latex] \alpha x \Leftrightarrow ( \alpha x_1, \alpha x_2 )[/latex].

Задача

Даны пространства [latex] A = \mathbb{R}[/latex] и [latex] B = \mathbb{R}[/latex]. Установить между ними соответствие, которое:

  1. будет являться изоморфизмом;
  2. не будет являться изоморфизмом.

Решение

  1. Первое, что мы делаем, это каждому числу [latex] a \in \mathbb{R}[/latex] ставим в соответсвие число [latex] b \in \mathbb{R}[/latex], придерживаясь правила: [latex] b= 2a[/latex]. Каждое [latex] b \in \mathbb{R}[/latex] будет отвечать единственному числу [latex] a= \frac{1}{2}b[/latex]. Отсюда следует, что утверждение [latex] b= 2a[/latex] устанавливает взаимно однозначное соответствие [latex] \mathbb{R} \Leftrightarrow \mathbb{R}[/latex]. Если [latex] a_1 \Leftrightarrow b_1[/latex] и [latex] a_2 \Leftrightarrow b_2[/latex], т.е. [latex] b_1 = 2a_1[/latex] и [latex] b_2= 2a_2[/latex] то [latex] (a_1+a_2) \Leftrightarrow (b_1+b_2)[/latex], так как [latex] b_1+b_2= 2a_1+2a_2 = 2(a_1+a_2)[/latex]. Если [latex] a \Leftrightarrow b[/latex], т.е. [latex] b= 2a[/latex], то [latex] \lambda a \Leftrightarrow \lambda b[/latex] для каждого действительного числа [latex] \lambda [/latex], так как [latex] \lambda b= \lambda 2a= 2 \lambda a[/latex]. Как результат, в данном соответствии [latex] b= 2a[/latex] сохраняются линейные операции, и оно является изоморфизмом.
  2. Следующее взаимно однозначное соответствие, которое будем рассматривать [latex] \mathbb{R} \Leftrightarrow \mathbb{R}[/latex], устанавливается формулой [latex] b= a^3[/latex] (число сопоставляемое числу [latex] a= \sqrt[3]{b}[/latex]). Данное соответствие не будет являться изоморфизмом, потому что будет сохранять линейные операции. Как пример, если [latex] a \Leftrightarrow b[/latex], т.е. [latex] b= a^3[/latex], то [latex]{(2a)}^3= 8a^3= 8b[/latex]. Значит, [latex] 2a \Leftrightarrow 8b[/latex], возникает противоречие условию [latex] \lambda a \Leftrightarrow \lambda b[/latex] для [latex] \lambda = 2[/latex] .

Задача

Проверить, являются ли изоморфными пространства:
[latex] X_1= \{ f(x) \in R[x] | f(x) \quad\vdots\quad (x^2+1) \}[/latex] и [latex] X_2[/latex], натянутое на систему векторов [latex] <a_1, a_2, a_3>. a_1=(0,0,1,0,1)[/latex], [latex] a_2=(0,1,0,1,0)[/latex] и [latex] a_3=(1,0,1,0,0)[/latex].

Решение

Найдем базис [latex] X_1[/latex]
[latex] \forall f(x) \in X_1 \Leftrightarrow f(x)= [/latex] [latex](x^2+1)(ax^2+bx+c)=[/latex] [latex]ax^4+bx^3+ax^2+cx^2+bx+c=[/latex] [latex]a(x^4+x^2)+b(x^3+x)+c(x^2+1)[/latex], таким образом [latex]<x^4+x^2,x^3+x,x^2+1>[/latex] — базис.
Очевидно, что система [latex] <a_1,a_2,a_3>[/latex], на которую натянуто [latex] X_2[/latex] ЛНЗ (линейно независимая система), dim [latex] X_1 =[/latex] dim [latex] X_2= 3[/latex]. Следовательно по критерию изоморфности [latex] X_1 \simeq X_2[/latex].

Источники

  1. Белозеров Г.С. Конспект лекций
  2. Проскуряков И.В. Сборник задач по линейной алгебре. Издание пятое, 1974.Стр. 170

Изоморфизм линейных пространств

Тест по теме: «Изоморфизм линейных пространств. Критерий изоморфности»