Processing math: 100%

Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Для равномерной сходимости несобственного интеграла baf(x,y)dx необходимо и достаточно выполнение условия Коши. А именно: ε>0η<b такое, что η,ηϵ(η,b) и y ϵ Y выполнялось следующее неравенство |ηηf(x,y)dx|<ε.

Доказательство

Необходимость

Пусть интеграл baf(x,y)dx равномерно сходится по параметру y ϵ Y. Из определения получаем, что ε>0 найдется такое η ϵ [a,b) , что η ϵ [b,η) и для всех y ϵ Y выполнялось следующее неравенство
|bηf(x,y)dx|<ε2.

При η,η ϵ [η,b), y ϵ Y получим такое неравенство |ηηf(x,y)dx|=|bηf(x,y)dxbηf(x,y)dx|
|bηf(x,y)dx|+|bηf(x,y)dx|<ε2+ε2=ε,
а значит, что условие Коши выполнено.

Достаточность

Положим, что условие Коши выполняется. А это означает, что в силу критерия Коши несобственный интеграл baf(x,y)dx сходится y ϵ Y. Докажем равномерную сходимость на Y. Рассмотрим неравенство |ηηf(x,y)dx|<ε,

в котором устремим η к b, при этом η<b. В результате для любого η>η и y ϵ Y получаем следующее: |bηf(x,y)dx|ε,
что и означает равномерную сходимость интеграла baf(x,y)dx на Y. ◻

Пример

Проверить интеграл на равномерную сходимость.

+0eyx2dx

Решение

Список литературы

Тест

Практические задания из данного теста были позаимствованы из сборника задач и упражнений по математическому анализу Б.П. Демидовича.

Рекомендую проверить насколько хорошо усвоен материал, пройдя следующий тест.

Таблица лучших: Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

максимум из 14 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Несобственные интегралы, зависящие от параметра, равномерная сходимость.

Оглавление

  1. Несобственный интеграл, зависящий от параметра. Определение.
  2. Равномерная сходимость
  3. Примеры
  4. Список литературы
  5. Тесты

Несобственный интеграл, зависящий от параметра

Пусть функция двух переменных f(x,y) определена на данной области: {ax<+,cyd} (см. рисунок), и при каждом фиксированном yϵ[c,d] существует несобственный интеграл +af(x,y)dx, являющийся функцией от y. Тогда функция I(y)=+af(x,y)dx yϵ[c,d] называется несобственным интегралом первого рода, зависящим от параметра y. Также, интервал [c,d] может быть бесконечным.

Возьмем функцию f(x,y). Интеграл вида baf(x,y)dx является сходящимся на множестве Y, при выполнении следующих условий:

  1. <a<b+
  2. функция f(x,y) определена на [a,b)×Y, где Y является множеством параметров.
  3. η ϵ [a,b) и y ϵ Y функция f(x,y) интегрируема по Риману на отрезке [a,η].
  4. y ϵ Y несобственный интеграл baf(x,y)dx сходится.

Можно сделать вывод, что несобственный интеграл baf(x,y)dx сходится на Y, при условии, что y ϵ Y и для любого числа ε>0 существует такое η(y,ε)<b, такое, что для любого ηϵ(η,b) выполняется неравенство  |bηf(x,y)dx|<ε.

Читать далее «Несобственные интегралы, зависящие от параметра, равномерная сходимость.»

Критерий сходимости несобственных интегралов

Теорема

Пусть f(x) не изменяет знак на полуинтервале [a,b) и для любого ξ из данного полуинтервала f(x) интегрируема по Риману на отрезке[a,ξ]. Тогда для сходимости несобственного интеграла baf(x)dx необходимо и достаточно, чтобы функция Φ(ξ)=ξaf(x)dx была ограничена на [a,b).

Спойлер

Доказательство

Докажем вначале теорему для f(x) неотрицательной. Покажем, что функция Φ(ξ) возрастает. Действительно, для любых ξ1, ξ2 из [a,b), ξ1<ξ2
Φ(ξ1)Φ(ξ2)=ξ1af(x)dxξ2af(x)dx=ξ2ξ1f(x)dx0,

так как f(x) неотрицательна.

Из определения сходимости несобственного интеграла, интеграл baf(x)dx сходится тогда, когда существует конечный предел limξb0ξaf(x)dx=limξb0Φ(ξ),

а данный предел существует как предел монотонной и ограниченной функции Φ(ξ).

В случае если f(x) — неположительная, то рассмотрим функцию g(x)=f(x) — неотрицательную. Из сходимости g(x) следует сходимость f(x), а для g(x) теорема уже доказана.

Спойлер

Список Литературы

Критерий сходимости несобственных интегралов

Тест по теме: Критерий сходимости несобственных интегралов

После прочтения статьи, для закрепления материала, рекомендуется пройти тест по данной теме


Таблица лучших: Критерий сходимости несобственных интегралов

максимум из 30 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Критерий Коши сходимости несобственных интегралов

Будем рассматривать несобственный интеграл от неограниченной функции.

Теорема

Пусть f(x) определена на полуинтервале [a,b). Для сходимости несобственного интеграла baf(x)dx необходимо и достаточно, чтобы выполнялось условие Коши: для всякого ε>0 найдется такое δ[a,b), что для любых ξ1,ξ2(δ,b) выполняется неравенство |ξ2ξ1f(x)dx|<ε.

Доказательство

Обозначим функцию Φ(ξ)=ξaf(x)dx. Тогда, сходимость интеграла baf(x)dx означает существование конечного предела limξb0ξaf(x)dx=limξb0Φ(ξ), а этот предел существует, согласно критерию Коши, когда функция Φ(ξ) удовлетворяет условию
ε>0δ[a;b):ξ1,ξ2(δ,b)|Φ(ξ2)Φ(ξ1)|<ε.


И в силу свойств интеграла получаем |Φ(ξ2)Φ(ξ1)|=|ξ2af(x)dxξ1af(x)dx|=|ξ2ξ1f(x)dx|<ε.

А это то, что нам и требовалось доказать.

Список Литературы

Критерий Коши сходимости несобственных интегралов

После прочтения статьи, для закрепления материала, рекомендуется пройти тест по данной теме


Таблица лучших: Критерий Коши сходимости несобственных интегралов

максимум из 30 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Несобственный интеграл на неограниченном промежутке

Пусть функция f(x) определена в промежутке [a,+), т.е. для xa, и интегрируема в любой конечной его части [a,A], так что интеграл Aaf(x)dx имеет смысл при любых Aa.

Предел этого интеграла (конечный или бесконечный) при A+ называют интегралом функции f(x) от a до + и обозначают символом af(x)dx=limA+Aaf(x)dx(1)

В случае, если этот предел конечен, говорят, что интеграл (1) сходится, а функцию f(x) называют интегрируемой в бесконечном промежутке [a,+). Если же предел (1) бесконечен или вовсе не существует, то про интеграл говорят, что он расходится. В отличие от собственного интеграла, этот интеграл называются несобственным.

Спойлер

Спойлер

Аналогично интегралу с бесконечным верхним пределом определяется интеграл в пределах от до b: bf(x)dx=limBbBf(x)dx

Спойлер

Несобственный интеграл на неограниченном промежутке

Тест на знание темы «Несобственный интеграл на неограниченном промежутке»

Литература: