Processing math: 100%

16.1 Равномерная сходимость

Определение. Пусть на множестве E задана последовательность функций fn(n=1,2), сходящаяся на E поточечно к функции f. Говорят, что последовательность {fn} сходится равномерно к функции f на множестве E, если для любого ε>0 найдется такой номер N, зависящий только от ε (и не зависящий от x), что для каждого nN справедливо неравенство fn(x)f(x)∣<ε.

Определение поточечной сходимости на множестве E в кванторах можно записать следующим образом:
xEε>0N=N(ε,x):nNfn(x)f(x)∣<ε, а равномерной сходимости — так: ε>0N=N(ε):nNxEfn(x)f(x)∣<ε. В определении поточечной сходимости номер N зависит, вообще говоря, от ε и от x, а в определении равномерной сходимости N зависит только от ε и не зависит от x. Иначе говоря, поточечная сходимость будет равномерной, если для заданного ε>0 номер N можно подобрать так, чтобы он был пригоден сразу для всех xE.

Теперь видно, что свойство равномерной сходимости не слабее, чем свойство поточечной сходимости, т. е. из равномерной сходимости следует поточечная сходимость. Обратное неверно. Может оказаться, что для каждого ε>0 и для xE найдется номер N=N(ε,x), но для всех сразу xE номер N, не зависящий от x, может и не существовать. Приведем

Пример 1. Пусть fn(x)=xn(xE[0,1]). Мы уже видели, что f(x)=limnfn(x)={0,0x<1,1,x=1. Если бы последовательность {xn} сходилась к функции f равномерно, то неравенство xnf(x)∣<ε при достаточно больших n(nN(ε)) должно было быть выполненным сразу для всех xE. Но это не так, поскольку при фиксированном n имеем limx10xn=1, так что в любой левой полуокрестности точки x0=1 найдется такая точка x112. Поэтому если мы возьмем ε0>12, то получим неравенство xn10∣≥ε0. Окончательно имеем ε0(ε0=12):NnN(n=N)x1= =x1(ε,n)E:∣fn(x1)f(x1)∣≥ε0 Это означает, что данная последовательность не является равномерно сходящейся на множестве E.

В этом примере «плохие» точки x1, т.е. такие, в которых выполнено неравенство fn(x1)f(x1)∣≥ε0, находится вблизи точки x0=1. Если же мы отделимся от x0, т.е. рассмотрим последовательность xn на множестве Eδ=[0,1δ], где δ>0 — произвольное число, то сходимость данной последовательности к функции f(x)0 на множестве Eδ уже будет равномерной. Действительно, в этом случае fn(x)f(x)∣=xn(1δ)n<ε(0x1δ), если только nN(ε), где N(ε)=[lnεln(1δ)]+1 не зависит от xEδ.

Пример 2. Для последовательности функций fn(x)=nx1+n2x2(xER) ранее мы показали, что f(x)=limxnx1+n2x2=0(xR). Поэтому fn(x)f(x)∣→0(n) при каждом фиксированном xR. Однако при фиксированном n наибольшее значение функция fn(x)=nx1+n2x2 достигает в точке xn=1n и это значение равно fn(1n)=12. Таким образом, для ε0=12 неравенство fn(x)f(x)∣<ε0 не может быть выполненным сразу для всех xR. Значит, последовательность {fn} сходится к функции f0 на R, но неравномерно, т.е. ε0(ε0=12):NnN(n=N)x1(x1=1n):∣fn(x1)f(x1)∣≥ε0.

Если же зафиксировать число δ>0, то нетрудно показать, что на множестве Eδ=[δ,+) последовательность функций fn(x)=nx1+n2x2 сходится равномерно. Действительно, неравенство fn(x)f(x)∣=nx1+n2x21nx1nδ<ε(xEδ) выполнено, если только nN(ε), где N(ε)=[1εδ]+1 не зависит от xEδ

Геометрический смысл равномерной сходимости состоит в том, что начиная с номера N графики функций fn(x) расположены в ε-полосе графика функции f.

Равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Определение. Пусть на множестве E задана последовательность функций {un}. Ряд (n=1)un называется равномерно сходящимся на множестве E, если он сходится поточечно на E и последовательность его частичных сумм равномерно сходится к сумме ряда на множестве E.

Другими словами, определение равномерной сходимости ряда (n=1)un, сходящегося к функции f на множестве E, можно сформулировать следующим образом. Обозначим через Sn(x)=n(k=1)uk(x) частичные суммы ряда (n=1)un(x),rn(x)=(k=n+1)uk(x) — остаток после n-го слагаемого. Тогда Sn(x)+rn(x)=f(x), а равномерная сходимость ряда означает, что для любого ε>0 найдется такой номер N (зависящий только от ε), что для всех nN и для всех xE справедливо неравенство Sn(x)f(x)∣<ε. Но так как Sn(x)f(x)∣=∣rn(x), то получаем ε>0N:nNxErn(x)∣<ε. Это в свою очередь означает, что остаток ряда равномерно стремится к нулю. Таким образом, получили следующее эквивалентное определение равномерной сходимости ряда.

Ряд (n=1)un(x) называется равномерно сходящимся на множестве E, если последовательность его остатков после n-го слагаемого {rn} равномерно сходится к нулю на множестве E.

Это определение более выгодно по сравнению с предыдущим тем, что оно использует лишь слагаемые исходного ряда и не использует сумму самого ряда f(x)=(n=1)un(x).

Пример 1. Ряд (n=1)xn сходится на интервале (1,1) т.к. он представляет собой сумму геометрической прогрессии со знаменателем x,x∣<1. Исследуем его на равномерную сходимость. Для этого рассмотрим остаток rn(x)=(k=n+1)xk=xn+11x. При фиксированном x и n имеем rn(x)0. Это означает, что данный ряд сходится при каждом x, т.е. поточечно. Если же зафиксировать n к 10, то получим, что xn+11x+, т.е. если x близок к 1, то rn(x) принимает большие значения. Это означает, что неравенство rn(x)=xn+11x<ε сразу для все x(1,1), но неравномерно.

С другой стороны, на любом отрезке [q,q], где 0<q<1, ряд (n=1)xn сходится равномерно. Действительно, в этом случае rn(x)∣=(k=n+1)xn∣=xn+11xqn+11q,(x[q,q]). Отсюда следует, что последовательность {rn(x)} равномерно сходится к нулю на [q,q], т.е. данный ряд равномерно сходится на [q,q].

Пример 2. Рассмотрим ряд (n=0)x2(1+x2)n. Имеем rn(x)={x2(1+x2)n,x00,x=0. Если x фиксировано, то rn(x)0 при n. Это означает, что ряд является сходящимся при любом xR, т.е. он сходится поточечно. Если зафиксируем n, то при стремлении x к нулю получаем, что rn(x)1, а это означает, что неравенство rn(x)=1(1+x2)n<ε при 0<ε<1 не может выполняться сразу для всех xR, каким бы большим номер n мы ни взяли. Таким образом, rn(x)0(n), но неравномерно. Следовательно, данный ряд сходится на R неравномерно.

Замечание. Пусть задан ряд (n=1)un(x)(xE).(16.2) Рассмотри величины μn=supxE(k=n+1)uk(x)∣=supxErn(x). Тогда определение равномерной сходимости ряда (16.2) на множестве E можно сформулировать следующим образом.

Ряд (16.2) сходится равномерно на множестве E, если limnμn=0.

Действительно, если μn0(n), то для любого ε>0 найдется такой номер N, что для всех nN справедливо неравенство μn<ε, т.е. для всех xE справедливо неравенство rn(x)∣<ε, а значит ряд (16.2) сходится равномерно. Обратно, если rn(x) равномерно сходится к нулю, то для всех xE справедливо неравенство rn(x)∣<ε. Поэтому и μn=supxErn(x)∣≤ε, т.е. μn0 при n.

Пример 3. Исследовать на равномерную сходимость ряд (n=1)(1)nx2+n на множестве R

Данный ряд является рядом лейбницевского типа и поэтому, согласно теореме об оценке остатка ряда лейбницевского типа, rn(x)∣≤1x2+n+11n+1. Таким образом, μn1n+10(n), и, следовательно, данный ряд сходится равномерно на R.

Теорема(критерий Коши равномерной сходимости последовательности). Для того чтобы последовательность функций {fn} равномерно сходилась на множестве E к некоторой функции, необходимо и достаточно, чтобы для любого ε>0 существовал такой номер N, зависящий только от ε, что для любых n,mN и для любого xE было выполнено неравенство fn(x)fm(x)∣<ε.

Необходимость. Пусть последовательность {fn} сходится к f равномерно на E. Зададим ε>0. Тогда найдется такой номер N, что для все nN и для всех xE справедливо неравенство fn(x)f(x)∣<ε2. Если возьмем произвольные, n,mN, то для любого xE получим fn(x)fm(x)∣≤∣fn(x)f(x)+fm(x)f(x)∣<ε2+ε2=ε, т.е. выполнено условие теоремы (условие Коши).
Достаточность. Пусть выполнено условие Коши. Зафиксируем xE и получим числовую последовательность {fn(x)}, которая, согласно условию Коши, является фундаментальной и, следовательно, сходящейся. Обозначим ее предел через f(x). Так как x inE произвольное, то, проделав эту операцию для все xE, получим функцию f(x). Покажем, что последовательность {fn(x)} стремится к f(x) равномерно на E. Зададим ε>0. Тогда найдется такой номер N, что для всех n,mN и для любого xE справедливо неравенство fn(x)fm(x)∣<ε. Зафиксируем nN,xE и устремим m. Тогда получим fn(x)f(x)∣≤ε. Это неравенство выполнено для любого nN и для всех xE, а это и означает, что последовательность {fn} сходится к f равномерно на E.

Доказанную теорему можно переформулировать для рядов следующим образом.

Теорема(критерий Коши равномерной сходимости ряда). Для того чтобы ряд (n=1)un(x) равномерно сходился на множестве E, необходимо и достаточно, чтобы для любого E>0 существовал такой номер N, зависящий только от ε, что для всех nN,pN и для любого xE выполнялось неравенство n+pk=n+1uk(x)∣<ε.

Эта теорема вытекает из предыдущей, если учесть, что равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Теорема (признак Вейерштрасса равномерной сходимости ряда). Пусть дан ряд n+1un(x)(xE).(16.3) Предположим, что существует числовая последовательность {an}, такая, что un(x)∣≤an(n=1,2) для всех xE, и числовой ряд n=1an сходится. Тогда ряд (16.3) сходится равномерно на E.

В силу условия теоремы, имеем n+pk=n+1uk(x)∣≤n+pk=n+1ak(xE). Так как ряд n=1an сходится по условию, то, в силу критерия Коши для числовых рядов, для любого ε>0 найдется такой номер N, что для всех nN и для любого pN справедливо неравенство n+pk=n+1ak<ε. Но тогда и неравенство n+pk=n+1uk(x)∣<ε будет выполненным для всех xE, т.е. выполнено условие критерия Коши равномерной сходимости функционального ряда, в силу которого ряд (16.3) сходится равномерно на E.

Замечание 1. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда. В самом деле, рассмотренный выше пример 3 ряда n=1(1)nx2+n показывает, что этот ряд хотя и сходится равномерно на R, но оценить сверху его слагаемые можно лишь слагаемыми расходящегося числового ряда n=11n

Замечание 2. Признак Вейерштрасса дает достаточное условие не только равномерной, но и абсолютной сходимости ряда. Это сразу следует из неравенства n+pk=n+1uk(x)∣≤n+pk=n+1ak(xE).

Замечание 3. Признак Вейерштрасса заключается в том, что из сходимости ряда n=1an, где an=supxEun(x), следует равномерная (и абсолютная) сходимость ряда n=1un(x) на множестве E.

Пример 4. Рассмотрим ряд n=1x1+n4x2 на R. Используя очевидное неравенство 2a∣≤1+a2, находим мажорантный числовой ряд x1+n4x2∣≤1n2n2x1+(n2x)2121n2. Поскольку числовой ряд n=1121n2 сходится, то исходный функциональный ряд сходится равномерно на R.

Пример 5. Ряд n=1cosnxn2 сходится равномерно на R, поскольку cosnxn2∣≤1n2 и числовой ряд n=11n2 сходится.

Теорема(признак Абеля равномерной сходимости) Пусть на множестве E заданы две функциональные последовательности {an(x)} и {bn(x)}, такие, что при каждом xE числовая последовательность {an(x)} монотонна, функции an(x) ограничены в совокупности, т.е. существует такое M, что an(x)∣≤M(xE,n=1,2,), а ряд n=1bn(x) сходится равномерно на E. Тогда ряд n=1an(x)bn(x) сходится равномерно на E.

Теорема(признак Дирихле равномерной сходимости). Пусть на множестве E заданы две последовательности функций {an(x)} и {bn(x)}, такие, что при каждом xE числовая последовательность {an(x)} монотонна, функциональная последовательность {an(x)} равномерно сходится к нулю на E, а частичные суммы ряда n=1bn(x) ограничены в совокупности на E, т.е. существует такое число M, что nk=1bk(x)∣≤M(xE,n=1,2,). Тогда ряд n=1an(x)bn(x) сходится равномерно на E.

Доказательства признаков Абеля и Дирихле легко провести, основываясь на критерии Коши и применяя преобразование Абеля(точно так же, как это было сделано при доказательстве признаков Абеля и Дирихле сходимости числовых рядов). Рекомендуется провести эти доказательства самостоятельно.

Пример 6. Рассмотрим ряды вида n=1an(x)cosnx и n=1an(x)sinnx, где последовательность чисел an монотонно стремится к нулю. К ряду n=1an(x)cosnx применим признак Дирихле. Для этого рассмотрим суммы Sn(x)=nk=1coskx. Имеем 2sinx2Sn(x)=nk=12sinx2coskx= =sin3x2sinx2+sin5x2sin3x2++sin(n+12)xsin(n12)x= =sin(n+12)xsinx2. Поэтому Sn(x)=sin(n+12)x2sinx212(0<x<2π),Sn(x)∣≤12+12sinx2. Если x0, то Sn(x)n, так что в окрестности нуля нарушается равномерная ограниченность сумм Sn(x). Если же δx2πδ, где 0<δ<π, то Sn(x)∣≤12+12sinδ2 и поэтому [δ,2πδ] выполнены все условия признака Дирихле, в силу которого ряд n=1ancosnx сходится равномерно на [δ,2πδ]. На всем интервале (0,2π) признак Дирихле неприменим, но это еще не означает, что ряд сходится неравномерно, поскольку признак Дирихле — лишь достаточное условие равномерной сходимости ряда.

Покажите самостоятельно, что ряд n=1ansinnx, где последовательность {an} монотонно убывает к нулю, сходится равномерно на [δ,2πδ], где произвольное 0<δ<π. Для этого полезно использовать равенство nk=1sinkx=12sinx2nk=12sinx2sinkx= =12sinx2nk=1[cos(k12)xcos(k+12)x]= =12sinx2[cosx2cos(n+12)x](0<x<2π) и применить признак Дирихле.

Примеры решений задач

  1. Исследовать на равномерную сходимость на интервале (,+) ряд n=1nx1+n5x2.
Решение

Исследовать на равномерную сходимость на отрезке  [0,2π] ряд +n=1=sinnxn .

Решение

Равномерная сходимость

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список литературы


Тер-Крикоров А.М., Шабунин М.И. Курс Математического Анализа. 1997; с исправлениями 2001. ФИЗМАТЛИТ, 2001, стр.  384 — 407.

В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу Т.2. Одесса, «Астропринт», 2010, стр. 32-41.

Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления» ФИЗМАТЛИТ, 1964 т.2, стр. 376-386.

М655. О чиновниках и циклах

Задача из журнала «Квант». Выпуск №11 1980 года.

М655. На столе у чиновника Министерства околичностей лежит n томов Британской энциклопедии, сложенных в несколько стопок. Каждый день, придя на работу, чиновник берет из каждой стопке по одному тому и складывает взятые тома в новую стопку, затем располагает стопки по количеству томов (в невозрастающем порядке) и заполняет ведомость, в которой указывает количество томов в каждой стопке. Кроме сказанного выше, чиновник никогда ничего не делает.

а) Какая запись будет сделана в ведомости через месяц, если общее кол-во томов n=3,n=6,n=10 (начальное расположение произвольно)

б) Докажите, что если общее число томов n=12k(k+1), где k — натуральное, то, начиная с некоторого дня, ведомость будет заполняться одинаковыми записями.

в) Исследуйте, что будет через много дней работы при других значениях n.

Решение

При n=3 возможны всего три расположения:
(1,1,1) — три стопка по одному тому;
(3) — одна стопка из трех томов;
(2,1) — одна стопка из двух томов и одна стопка из одного тома.

рис. 1

Стрелки на рисунке 1 показывают, во что каждое расположение переходит на следующий день. Из рисунка видно, что, с чего бы мы не начали, не позже, чем через два дня (что записано как T=2), возникает расположение (2,1), и затем оно будет повторяться. На рисунке 2 показан аналогичный граф для n=6. Число m возможных расположений здесь равно 11. Не позже, чем через T=6 дней после начала работы возникнет расположение (3,2,1), и затем оно будет повторяться. Аналогичный граф для n=10 имеет m=42 вершины, и не позже, чем через T=12 дней после начала возникнет расположение (4,3,2,1), и затем оно будет повторяться.

рис. 2

Разумеется, далеко не каждый ориентированный граф из каждой вершины которого выходят одна стрелка, обладает единственной «конечной» вершиной, то есть не всегда, идя по его стрелкам, мы придем в одну и ту же вершину и там останемся (рис. 3). Граф может распадаться на отдельные части, не связанные между собой ни одной стрелкой, может содержать циклы. Поэтому тот факт, что при n=12k(k+1), начиная с некоторого дня, получается одно и то же расположение совсем не очевиден, и мы сейчас его докажем. Рассмотрим сразу произвольное n.

рис. 3

Вообразим четверть бесконечного листа бумаги в клетку (рис. 4), клетки которого пронумерованы парами натуральных чисел слева направо и снизу вверх: клетка с номером (x,y) стоит в столбце x и в строке y. Изготовим n фишек и разместим их в клетках нашей бумаги следующим образом: в первом столбце столько фишек, сколько томов в первой стопке, во втором столько, сколько томов во второй стопке и т.д. Размещение фишек на рисунке 4 соответствует расположению (8,3,3,1,1,1). Преобразование, которое каждый день выполняет чиновник, можно представить в виде трах операций:

  1. Уберем фишки, находящиеся в самой нижней строке.
  2. Передвинем оставшиеся фишки на одну клетку вниз и на одну клетку вправо.
  3. Теперь выложим на бумагу убранные фишки, но не на нижнюю строку, а на самый левый столбец (освободившийся).
рис. 4

В результате этих операций рисунок 4 перейдет в рисунок 5. Правда, результат действия наших трех операций отличается от того, что делает чиновник, тем, что в конце дня чиновник еще упорядочивает стопки по убыванию, но мы пока что не будем делать таких преобразований.

При нашей последовательности операций фишка (x,y) перейдет в клетку (1,x), если y=1, или (x+1,y1), если y>1.

рис. 5

Назовем i-й диагональю совокупность тех клеток (x,y), для которых x+y=i+1. Под действие нашего преобразования фишки, находящиеся на i-й диагонали, не сойдут с нее, а будут перемещаться по правилу: (1,i)(2,i1)(3,i2)(i,1)(1,i)

Теперь дополним преобразование, тем, что в каждой строке, где это возможно, сдвинем все фишки на одно место влево, тем самым упорядочим стопки как надо. Теперь все наше преобразование точно соответствует тому, что делает чиновник. Сдвиг влево означает, что для некоторых фишек величина x+y может уменьшаться, но она по-прежнему не может увеличиваться. Но эта величина — натуральное число, значит она не может уменьшаться бесконечное количество раз. Наступит такой момент, что для всех фишек величина x+y уже не будет уменьшаться. Таким образом каждая фишка займет свою диагональ. Докажем, что тогда для всякого i будет выполняться следующее условие: если i-я диагональ не полностью заполнена фишками, то в (i+1)-й диагонали нет ни одной фишки.

Докажем от противного: пусть в i-й диагонали есть пустая клетка, а в (i+1)-й диагонали есть хоть одна фишка. Фишки на i-й диагонали (если они есть) передвигаются, попадая через каждые i шагов на прежние места. фишка на (i+1)-й диагонали передвигается, попадая через каждые (i+1) шагов на прежнее место. Посмотрим, что происходит в моменты 0,(i+1),2(i+1),3(i+1),,i(i+1). Фишка на (i+1)-й диагонали в эти моменты оказывается там же, где и была в нулевой момент. Пустое место на i-й диагонали как бы двигается вместе с фишками, значит оно побывает на всех клетках i-й диагонали, а значит побывает слева от фишки на (i+1)-й диагонали. Но тогда эта фишка должна сдвинуться влево, что невозможно, так как мы предположили, что такие перемещения уже закончились.

Что же это за расположение фишек, при котором за неполной диагональю может идти только пустая? Если n=12k(k+1), то такое расположение, очевидно, только одно: все диагонали от 1-й до k-й заполнены фишками, а все остальные — пустые. Это доказывает утверждение б), так как все фишки не покидают своих диагоналей, и не сдвигаются влево с какого-то момента.

Пусть теперь n12k(k+1). Тогда существует такое k, что 12k(k+1)<n<12(k+1)(k+2).

Положим r=n12k(k+1). В этом случае расположение фишек, при котором за неполной диагональю следуют пустые такое: все диагонали от 1-й до k-й заполнены фишками, на (k+1)-й диагонали находится r фишек, а следующие диагонали пусты. Фишки, находящиеся на (k+1)-й диагонали перемещаются по ней, попадая через каждые (k+1) шагов на свои прежние места. Это ответ на вопрос в).

Равномерная сходимость и интегрирование

Пусть fn — последовательность интегрируемых на отрезке [a;b] функций, поточечно сходящаяся к функции f. Поставим вопрос об интегрируемости на отрезке [a;b] предельной функции f и справедливости равенства
limnbafn(x)dx=baf(x)dx
Следующие примеры показывают, что в общем случае и интегрируемости нет, и равенство не выполняется.

Пример 1

Пусть {rn}n=1 — последовательность всех рациональных точек из отрезка [0;1]. Выразим:
fn(x)={1,x{r1,,rn},0,x[0;1]{r1,,rn}
Тогда каждая функция fn интегрируема на отрезке [0;1], потому что она имеет лишь конечное число точек разрыва {r1,rn}. С другой стороны, видно, что limnfn(x)=D(x) где D — функция Дирихле. Но как известно, функция Дирихле не интегрируема на отрезке [0;1].
Вывод: мы построили последовательность интегрируемых функций, сходящуюся к неинтегрируемой функции.

Замечание (для рядов)

Спойлер

Пример 2

Положим fn(0)=fn(1n)=fn(1)=0,fn(12n)=n, а на отрезках [0;12n],[12n;1n],[1n;1] функция fn — линейна. Мы видим, что limnfn(x)=0,x[0;1], так что предельная функция f(x)0(x[0;1]) интегрируема и 10f(x)dx=0. С другой стороны, очевидно, что 10fn(x)dx=12, поэтому предельный переход под знаком интеграла недопустим.
Вывод: даже если предельная функция интегрируема, то предел интегралов не обязан равняться интегралу от предельной функции.

Замечание (для рядов)

Спойлер

Вывод (для рядов)

Воспользовавшись этими примерами мы показали, что нельзя почленно интегрировать сходящийся ряд, т.е. равенство ban=1un(x)dx=n=1baun(x)dx
не верно. Потому что сумма поточечно сходящегося ряда из интегрируемых функций может оказаться неинтегрируемой функцией, а если даже сумма ряда будет функцией интегрируемой, то нужное равенство все равно нельзя гарантировать.

Теорема (об интегрировании равномерно сходящейся последовательности)

Пусть последовательность {fn(x)} из непрерывных на отрезке [a;b] функций, равномерно сходится к f(x) на этом отрезке. Тогда существует limnbafn(x)dx=baf(x)dx

Доказательство

Спойлер

Следствие (об интегрировании равномерно сходящегося ряда)

Пусть {un} — последовательность непрерывных на отрезке [a;b] функций такова, что ряд n=1un(x) сходится равномерно на [a;b]. Тогда справедливо равенство ban=1un(x)dx=n=1baun(x)dx

Доказательство

Спойлер

Следующая теорема является обобщением всех теорем об интегрировании равномерно сходящейся последовательности.

Теорема

Пусть {fn} — последовательность интегрируемых на отрезке [a;b] функций, равномерно сходящаяся на этом отрезке к функции f. Тогда предельная функция f интегрируема на [a;b] и справедливо равенство limnbafn(x)dx=baf(x)dx

Доказательство

Спойлер

Тесты

равномерная сходимость и интегрирование

Проверьте свои знания по теме «Равномерная сходимость и интегрирование»

Равномерная сходимость последовательностей и рядов

Функциональные последовательности

Если каждому натуральному числу n ставится в соответствие по некоторому закону функция fn(x), определенная на множестве E, то говорят, что на множестве E задана функциональная последовательность {fn(x)}. Множество E называется областью определения последовательности {fn(x)}.

Если для некоторого x0E числовая последовательность {fn(x0)} сходится, то говорят, что последовательность функций {fn(x)} сходится в точке x0. Последовательность функций, сходящуюся в каждой точке xE, называют сходящейся на множестве E.

Если limnfn(x)=f(x) для всех xE, то говорят, что последовательность {fn(x)} на множестве E сходится к функции f(x). Эту функцию называют предельной функцией последовательности.

Равномерная сходимость функциональных последовательностей

Пусть задана последовательность функций {fn(x)} и предельная функция f(x). Говорят, что последовательность функций равномерно сходится на множестве E к функции f(x) если
ε>0nεN:nnε xE|fn(x)f(x)|<ε.
Последовательность {fn(x)} называется равномерно сходящейся на E, если существует функция f(x), к которой она равномерно сходится.

Спойлер

Функциональные ряды

Аналогично вводим понятие функциональных рядов. Пусть каждому натуральному числу n ставится в соответствие по некоторому закону функция un(x), определенная на множестве E. Формально говоря нам дана функциональная последовательность {un(x)}.

Выражение вида u1(x)+u2(x)++un(x)+=n=1un(x) называется функциональным рядом. Если для некоторого x0E числовой ряд n=1un(x0) сходится, то говорят, что функциональный ряд n=1un(x) сходится в точке x0. Функциональный ряд, сходящийся в каждой точке xE, называют сходящимся на множестве E.

Сумма n первых членов ряда Sn(x)=k=1nuk(x) называется его частичной суммой. Заметим, что частичная сумма сама является функцией. Мы получаем функциональную последовательность {Sn(x)}.

Спойлер

Равномерная сходимость функциональных рядов

Пусть задан функциональный ряд n=1un(x), члены которого являются функциями, определенными на множестве E. Функциональный ряд называется равномерно сходящимся на множестве E, если последовательность его частичных сумм равномерно сходящаяся на множестве E. Согласно определению равномерной сходимости последовательности функции, существует такая функция S(x), что
ε>0nεN:nnε xE|Sn(x)S(x)|<ε.
Обозначим Sn(x)S(x)=rn(x)n-ый остаток ряда, получаем rn(x)=k=n+1uk(x). Тогда условие сходимости ряда примет вид: ε>0nεN:nnε xE|rn(x)|<ε.
Это означает, что какое бы мы маленькое ε не взяли, начиная с некоторого номера n, n-ый остаток ряда будет меньше этого ε.

Необходимое условие равномерной сходимости функционального ряда

Теорема

Если функциональный ряд n=1un(x) равномерно сходится на множестве E, то последовательность его членов {un(x)} равномерно стремится к нулю на множестве E.

Доказательство

Обозначим частичные суммы ряда как Sn(x), а сумму ряда (предельную функцию последовательности частичных сумм) как S(x). Согласно определению равномерной сходимости ряда
ε>0nεN:nnε xE|Sn(x)S(x)|<ε2,
поэтому для nnε справедливо также неравенство
|un+1(x)|=|Sn+1(x)Sn(x)|=|[Sn+1(x)S(x)]+[S(x)Sn(x)]|<ε2+ε2=ε.
А это и означает равномерную сходимость к нулю последовательности {un(x)}.

Список Литературы

Равномерная сходимость последовательностей и рядов

После прочтения статьи, для закрепления материала, рекомендуется пройти тест по данной теме


Таблица лучших: Равномерная сходимость последовательностей и рядов

максимум из 60 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных