Симметрическая группа

Множество всех подстановок порядка [latex]n[/latex] с операцией умножения подстановок образуют группу [latex]S_n[/latex]. Единичным элементом группы является подстановка [latex]e=\begin{pmatrix}1&2&\cdots&n\\1&2&\cdots&n\end{pmatrix}[/latex], обратной подстановкой для [latex]\pi=\begin{pmatrix}i_1&i_2&\cdots&i_n\\j_1&j_2&\cdots&j_n\end{pmatrix}[/latex] является [latex]\pi^{-1}=\begin{pmatrix}j_1&j_2&\cdots&j_n\\i_1&i_2&\cdots&i_n\end{pmatrix}[/latex]. Порядок этой группы равен [latex]n![/latex].
Группа [latex]S_n[/latex] называется симметрической группой порядка [latex]n[/latex] .
При [latex]n>2[/latex] группа [latex]S_n[/latex] не коммутативна.

Пример

Группа [latex]S_3[/latex] состоит из шести элементов: [latex]e=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix},\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix},\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix},\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix},\begin{pmatrix}1&2&3\\3&1&2\end{pmatrix},\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}.[/latex] Эта группа не коммутативна: произведение [latex]\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix}[/latex] равно [latex]\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}[/latex], что отлично от [latex]\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix}\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}=\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}[/latex].

Задача

Доказать, что порядок группы [latex]S_n[/latex] равен [latex]n![/latex].

Спойлер

Найдём порядок [latex]|S_n|[/latex] группы [latex]S_n[/latex]. Символ 1 можно подходящей перестановкой [latex]\sigma[/latex] перевести в любой другой символ [latex]\sigma (1)[/latex], для чего существует в точности [latex]n[/latex] различных возможностей. Но, зафиксировав [latex]\sigma (1)[/latex], в качестве [latex]\sigma (2)[/latex] мы имеем право брать только один из оставшихся [latex]n-1[/latex] символов (всего различных пар [latex]\sigma (1),\sigma (2)[/latex] имеется [latex](n-1)+(n-1)+…+(n-1)=n(n-1)[/latex] ), в качестве [latex]\sigma (3)[/latex] — соответственно [latex]n-2[/latex] символов и т.д. Всего возможностей выбора [latex]\sigma (1),\sigma (2),…\sigma (n)[/latex], а стало быть, и различных перестановок будет [latex]n(n-1)…2\cdot 1=n![/latex].

[свернуть]

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Циклическая группа

Будем говорить, что группа [latex]G[/latex] является циклической, если существует такой элемент [latex]a\in G[/latex], что всякий элемент [latex]x\in G[/latex] может быть записан в виде [latex]x=a^n[/latex], где [latex]n\in Z[/latex](другими словами, если отображение [latex]f: Z\rightarrow G[/latex], определяемое формулой [latex]f(n)=a^n,[/latex]сюръективно). При этом элемент [latex]a[/latex] называется образующей группы [latex]G[/latex]. Всякая циклическая группа, очевидно, абелева.
Примером бесконечной циклической группы служит аддитивная группа целых чисел — всякое целое число кратно числу [latex]1[/latex], то есть это число служит образующим элементом рассматриваемой группы; в качестве образующего элемента можно было бы также взять число [latex]-1[/latex].
Примером конечной циклической группы порядка [latex]n[/latex] служит мультипликативная группа корней [latex]n[/latex]-ой степени из единицы. Все эти корни являются степенями одного их них, а именно первообразного корня.

Задача

Пусть [latex]G[/latex] — группа с групповой операцией [latex]\ast[/latex] и [latex]g\in G[/latex]. Доказать, что множество [latex]H=\{g^k, (g’)^k|k\in N\cup \{0\}\}[/latex] является группой. Группа [latex]H[/latex] является циклической, порождённой [latex]g[/latex]. [latex]H=\langle g\rangle[/latex].

Спойлер
[свернуть]

Решение.Введём обозначения:[latex] g’=g^{-1}, (g’)^k=g^{-k}[/latex]. Докажем, что для [latex]m,n\in Z[/latex] выполняется [latex]g^m\ast g^n=g^{m+n}[/latex].
[latex] m\geq 0, n\geq 0\Rightarrow g^m\ast g^n=g^{m+n}[/latex].
[latex]-n\leq m<0

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Таблица лучших: Структуры и подструктуры

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Подструктуры

Подгруппа

Пусть [latex]H\neq\varnothing[/latex]. Множество [latex]H[/latex] является подгруппой группы [latex]G[/latex], если само [latex]H[/latex] является группой относительно сужения операции, определённой на [latex]G[/latex].

Критерий подгруппы

Пусть [latex]G[/latex] — группа. [latex] H\in G. H\neq\varnothing[/latex]
Тогда [latex]H[/latex] является подгруппой [latex]G \Leftrightarrow \forall a,b\in H ab^{-1}\in H ((a-b)\in H).[/latex], где [latex]b^{-1}[/latex] — элемент, обратный к [latex]b[/latex].

Задача

Проверить, являеется ли группа [latex](mZ,+) (m\geq 1)[/latex] подгруппой группы [latex](Z, +)[/latex], где [latex]Z[/latex] — множество целых чисел.

Спойлер

То, что [latex](mZ,+)[/latex] — группа, легко доказывается по определению.
Рассмотрим любые два элемента, принадлежищие множеству [latex]mZ[/latex].
[latex]\forall a,b\in mZ a=ma_1, b=mb_1 a,b,m\in Z[/latex]
[latex]a-b=ma_1-mb_1=m(a_1-b_1)\in mZ[/latex]
[latex]\Rightarrow[/latex] по критерию [latex](mZ,+)[/latex] подгруппы является подгруппой [latex](Z,+).[/latex]

[свернуть]

Подкольцо

Рассмотрим кольцо [latex]\mathcal{R}=(R,+,\cdot ,0,1)[/latex]. Если множество [latex]Q[/latex] есть подмножество множества [latex]R[/latex], замкнутое относительно операций сложения и умножения кольца [latex]R[/latex], содержащее нуль и единицу кольца [latex]R[/latex], а также вместе с каждым [latex]x\in Q[/latex] содержащее противоположный к нему элемент [latex](-x)[/latex], то [latex]\mathcal{Q}=(Q,+,\cdot ,0,1)[/latex] также есть кольцо. Его называют подкольцом кольца [latex]\mathcal{R}[/latex].

Другими словами, [latex]\mathcal{Q}[/latex] называется подкольцом в [latex]\mathcal{R}[/latex], если оно само является кольцом относительно сужения операций, определенных на [latex]R[/latex].

Критерий подкольца

Непустое подмножество [latex]R_1[/latex] кольца [latex]R[/latex] будет его подкольцом [latex]\Leftrightarrow[/latex]

  1. [latex]\forall a,b\in R_1 (a+b)\in R_1[/latex]
  2. [latex]\forall a,b\in R_1 ab\in R_1[/latex]

Подполе

Пусть [latex]P[/latex]-поле. [latex]L\subset P, L\neq\varnothing.[/latex]
[latex]L[/latex] называется подполем [latex]P[/latex], если [latex]L[/latex] само является полем относительно сужения операций, определённых на [latex]P[/latex].
При этом [latex]P[/latex] называется расширением [latex]L[/latex].
Понятие подполя определяется аналогично понятию подкольца.Единственное по сравнению с определением подкольца дополнительное требование состоит в том, что носитель подполя должен вместе с каждым элементом [latex]x[/latex] содержать обратный к нему по умножению поля элемент [latex]x^{-1}[/latex] . Это значит, что мультипликативная группа подполя должна быть подгруппой мультипликативной группы всего поля.

Пример

Спойлер

Если [latex]a[/latex] и [latex]b[/latex] — различные элементы поля [latex]F[/latex], то мы можем определить новое сложение [latex]\oplus[/latex] и новое умножение [latex]\odot[/latex] в [latex]F[/latex] следующим образом:
[latex]x\oplus y=x+y-a, x\odot y=a-(x-a)(y-a)/(b-a).[/latex]
(В геометрических терминах: мы меняем начало координат и масштаб.) Легко видеть, что элементы множества [latex]F[/latex] образуют также поле и относительно новых операций. Мы обозначаем это новое поле через [latex]F'[/latex]. Ясно, что подмножество поля [latex]F[/latex], которое является подкольцом поля [latex]F'[/latex], не будет, вообще говоря, подкольцом поля [latex]F[/latex]. Отметим, что [latex]a[/latex] и [latex]b[/latex] будут соответственно нулем и единицей поля [latex]F'[/latex].

[свернуть]

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Таблица лучших: Структуры и подструктуры

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Величина вектора на оси


Определение 1
Прямая линия с заданным на ней направлением называется осью.
Ось

Определение 2
Пусть задана ось и вектор $a$ на ней. Величиной вектора $\{a\}$ на оси называется вещественное число, равное длине вектора, если его направление совпадает с направлением оси и противоположное число в противном случае.

$\{a\}=\left |a\right |, \{b\}=-\left |b\right |$

Ось

Литература :

  1. Белозёров Г.С. Конспект лекций.
  2. В.А. Ильин, Э.Г Позняк Аналитическая геометрия. М.: Наука, 1988 — стр.12-13.

Таблица Кэли

Пусть $\mathbb A_{n}=\left \{ a_{1},a_{2},…,a_{n}\right \}$ — конечное множество из $n$ элементов, с заданной на нем бинарной алгебраической операцией $*$ так, что каждой паре элементов из этого множества будет поставлен в соответствие элемент из того же множества.
Тогда таблица Кэли (была введена А.Кэли в 1854) будет выглядеть следующим образом:

$\begin{matrix} * & {\textit a_{1}} & {\textit a_{2}} & {\ldots} & {\textit a_{n}} \\ {\textit a_{1}} & a_{1}*a_{1} & a_{1}*a_{2} & \ldots & a_{1}*a_{n} \\ {\textit a_{2}} & a_{2}*a_{1} & a_{2}*a_{2} & \ldots & a_{2}*a_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ {\textit a_{n}} & a_{n}*a_{1} & a_{n}*a_{2} & \ldots & a_{n}*a_{n} \\ \end{matrix}$

Таблица Кэли позволяет определить свойства операции:

Замечание. Также существует метод проверки ассоциативности БАО по таблице Кэли, но так как он очень громоздкий приводить мы его не будем.

Пример 1

Дано множество $\mathbb A=\left \{1,2,3,4,5,6,7,8 \right \}.$ На этом множестве задана операция $*$ такая, что $ \forall \, a,b \in \mathbb A, a*b=\max(a,b).$ Построить таблицу Кэли и определить свойства операции:

Спойлер

Построим таблицу Кэли:

$\begin{matrix} * & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 3 & 3 & 3 & 4 & 5 & 6 & 7 & 8\\ 4 & 4 & 4 & 4 & 4 & 5 & 6 & 7 & 8 \\ 5 & 5 & 5 & 5 & 5 & 5 & 6 & 7 & 8\\ 6 & 6 & 6 & 6 & 6 & 6 & 6 & 7 & 8\\ 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 8 \\ 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ \end{matrix}$

  • Таблица симметрична относительно главной диагонали, значит операция $*$ — коммутативна.
  • Первая строка совпадает с верхней строкой и первый столбец совпадает с левым столбцом, значит 1 — нейтральный элемент.
  • Симметричный элемент существует только для 1.
  • Можем сделать вывод, что $\left (\mathbb A,* \right )$ не является группой.

[свернуть]

Пример 2

Дано множество преобразований правильного треугольника $\mathbb B=\left \{\varphi _{0},\varphi _{1},\varphi _{2},\varphi _{3},\varphi _{4},\varphi _{5} \right \},$ переводящих треугольник в самого себя.
$\varphi _{0},\varphi _{1},\varphi _{2}$ — повороты треугольника против часовой стрелки соответственно на углы $0, \frac{2\pi }{3},\frac{4\pi }{3}$ вокруг точки $O.$
$\varphi _{3},\varphi _{4},\varphi _{5}$ — симметрия относительно осей $m, l, p$
simtriangle
Построить таблицу Кэли и показать, что $\left (\mathbb B,\circ \right )$ — группа:

Спойлер

Каждое преобразование представим в виде подстановки:

$\varphi _{0}=\begin{pmatrix}A & B & C \\ A & B & C\end{pmatrix}$ $\varphi _{1}=\begin{pmatrix}A & B & C \\ B & C & A\end{pmatrix}$ $\varphi _{2}=\begin{pmatrix}A & B & C \\ C & A & B\end{pmatrix}$ $\varphi _{3}=\begin{pmatrix}A & B & C \\ B & A & C\end{pmatrix}$ $\varphi _{4}=\begin{pmatrix}A & B & C \\ C & B & A\end{pmatrix} $ $\varphi _{5}=\begin{pmatrix}A & B & C \\ A & C & B\end{pmatrix}$

Составим таблицу Кэли:

$\begin{matrix} {\circ} & \varphi _{0} & \varphi _{1} & \varphi _{2} & \varphi _{3} & \varphi _{4} & \varphi _{5} \\ \varphi _{0} & \varphi _{0} & \varphi _{1} & \varphi _{2} & \varphi _{3} & \varphi _{4} & \varphi _{5} \\ \varphi _{1} & \varphi _{1} & \varphi _{2} & \varphi _{0} & \varphi _{4} & \varphi _{5} & \varphi _{3} \\ \varphi _{2} & \varphi _{2} & \varphi _{0} & \varphi _{1} & \varphi _{5} & \varphi _{3} & \varphi _{4}\\ \varphi _{3} & \varphi _{3} & \varphi _{5} & \varphi _{4} & \varphi _{0} & \varphi _{2} & \varphi _{1}\\ \varphi _{4} & \varphi _{4} & \varphi _{3} & \varphi _{5} & \varphi _{1} & \varphi _{0} & \varphi _{2} \\ \varphi _{5} & \varphi _{5} & \varphi _{4} & \varphi _{3} & \varphi _{2} & \varphi _{1} & \varphi _{0} \\ \end{matrix}$

  • Таблица несимметрична относительно главной диагонали, значит операция композиции подстановок — некоммутативна.
  • Первая строка совпадает с верхней строкой и первый столбец совпадает с левым столбцом, значит $\varphi _{0}$- нейтральный элемент.
  • Каждая строка и каждый столбец таблицы содержит нейтральный элемент, значит для каждого элемента из множества существует симметричный.
  • Композиция подстановок — ассоциативна.
  • Следовательно, $\left (\mathbb B,\circ \right )$ является группой.

[свернуть]

Литература:

  1. Белозёров Г.С. Конспект лекций.
  2. Кострикин А.И. Введение в алгебру. М., Наука, 1977 г, с.166, 167
  3. Курош А.Г. Теория групп. М., Наука, Физматлит, 1967 г, с.113

Тест


Таблица лучших: Таблица Кэли

максимум из 19 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных