Processing math: 100%

Равенства для модулей произведения и частного

Теорема.
Если a и b комплексные числа, то можно утверждать, что модуль произведение равен произведению модулей. Т.е. |a||b|=|ab|.

Пусть комплексные числа a и b заданы в тригонометрической форме: a=r(cos(ϕ)+isin(ϕ)),b=r(cos(ϕ)+isin(ϕ)). Перемножим эти числа: ab=(r(cos(ϕ)+isin(ϕ)))(r(cos(ϕ)+isin(ϕ)))= =rr(cos(ϕ)cos(ϕ)+icos(ϕ)sin(ϕ)+isin(ϕ)cos(ϕ)sin(ϕ)sin(ϕ))= =rr(cos(ϕ+ϕ)+isin(ϕ+ϕ)). После сокращения мы получили запись произведения ab в тригонометрической форме. Следовательно, |ab|=|a||b|.

Теорема.
Если a и b комплексные числа, то можно утверждать, что модуль частного равен частному модулей. Т.е. |a||b|=|ab|.

Пусть комплексные числа a и b заданы в тригонометрической форме: a=r(cos(ϕ)+isin(ϕ)),b=r(cos(ϕ)+isin(ϕ)), причём b 0, т.е. r 0. Тогда ab=r(cos(ϕ)+isin(ϕ))r(cos(ϕ)+isin(ϕ))= =r(cos(ϕ)+isin(ϕ))r(cos(ϕ)+isin(ϕ))r(cos(ϕ)2+sin(ϕ)2)= =rr(cos(ϕ)cos(ϕ)+isin(ϕ)cos(ϕ)icos(ϕ)sin(ϕ)+ +sin(ϕ)sin(ϕ))=rr(cos(ϕϕ)+isin(ϕϕ)). Следовательно, |ab|=|a||b|.

Литература

  1. Личный конспект, основанный на лекциях Г. С. Белозёрова.
  2. А.Г. Курош Курс высшей алгебры — Москва: Физмалит, 1968. -431с. (с. 118-120).

Равенства для модулей произведения и частного.

Проверим как Вы усвоили материал.

Евклидово пространство

Определение 1. Пусть дано вещественное линейное пространство E. Оно называется евклидовым, если на нем задано отображение из каждой пары векторов в соответствующее ей вещественное число. Назовем это отображение скалярным произведением. Отображение должно удолетворять следующим аксиомам:

  1. (x,y)=(y,x),
  2. (λx,y)=λ(x,y),
  3. (x+y,z)=(x,z)+(y,z),
  4. (x,x)>0приx0;(x,x)=0приx=0;x,y,zE,λR.

Отсюда можно получить ряд следствий:

  1. (x,λy)=λ(x,y),
  2. (x,y+z)=(x,y)+(x,z),
  3. (xz,y)=(x,y)(z,y),
  4. (x,yz)=(x,y)(x,z),
  5. a=mj=1αjxj, b=ni=1βiyi:(x,y)=(mj=1αjxj,b=ni=1βiyi)=mj=1ni=1αjβi(xj,yi)

Любое n-мерное линейное пространство можно превратить в евклидово(с помощью определения в нем скалярного произведения). В n-мерном линейном пространстве скалярное произведение можно задать различными способами.

Например, возьмем в произвольном вещественном пространстве G его некоторый базис g=e1,e2,,en и два любых вектора x, y. Допустим, x=ni=1αieiy=ni=1βiei

Теперь можно ввести скалярное произведение: (x,y)=ni=1αiβi.

Любое подпространство из E может быть Евклидовым, если в нем сохраняется скалярное произведение, определенное в E.

Определение 2. Пусть дан вектор x, принадлежащий евклидову пространству. Если (x,x)=1, то этот вектор называется нормированным. Ненулевой вектор можно нормировать, если умножить его на произвольное число λ: (λx,λx)=λ2(x,x)=1.

Значит, нормирующий множитель (λ)=(x,x)12

Определение 3. Пусть вектор x принадлежит евклидову пространству E. Длиной вектора x назовем число x∣=+(x,x), где xR. Данное определение имеет свойства длины:

  1. 0∣=0.
  2. x∣>0,еслиx0.
  3. λx∣=λx — свойство абсолютной однородности.

Определение 4. Пусть даны векторы x,y, принадлежащие евклидову пространствую. Тогда cos(x,y)=(x,x)xy,0(x,y)π — косинус угла между этими векторами

Рассмотрим применимость школьной геометрии к геометрии евклидова пространства. Пусть заданы два вектора x,yE;x0,y0 — две стороны треугольника. Тогда разность yx — третья сторона. С помощью формулы для угла можно вычислить квадрат третьей стороны: yx2=(yx,yx)=y2+x22(y,x)=y2+x2y∣∣xcos(b,a)

Получили теорему косинусов. Разумеется, если yx, то треугольник является прямоугольным. Также, из последней формулы можно получить теорему Пифагора: yx2=y2+x2. Из той же формулы получаем отношение длин сторон треугольника, если оценивать множитель cos(ba) сверху: yx2y2+x2+2yx=(y+x)2⇒∣yx∣⩽y+x.

И снизу: yx2y2+x22yx=(yx)2⇒∣yx∣⩽yx.

Литература

  1. Электронный конспект по линейной алгебре Белозерова Г.С.
  2. Воеводин В.В. Линейная алгебра.Стр. 88-90
  3. Курош А.Г. Курс высшей алгебры.Стр. 211-212

Теорема об умножении определителей

Теорема об умножении определителей. Определитель произведения двух квадратных матриц порядка n равен произведению определителей этих матриц: det(AB)=det(A)det(B) или полная формула: det(ki=1Ai)=ki=1detAi,Ai(P),i=1,,k.

Для доказательства рассмотрим случай k=2. Допустим заданы две матрицы A=aijMn(P) и B=bijMn(P). Воспользуемся вспомогательной блочной матрицей C=A0EB размера 2n×2n, определитель которой имеет вид: Δ=|a11a12a1n000a21a22a2n000an1an2ann000100b11b12b1n010b21b22b2n001bn1bn2bnn|
Вычислим Δ используя теорему Лапласа. Замечаем, что отличным от нуля будет только det(A). Следовательно, Δ=det(A)det(B). Теперь с помощью элементарных преобразований изменим Δ так, что в итоге получим определитель вида |ACEO|. Где C является произведением матриц A и B. Первый столбец умножим на b11 и прибавим к (n+1)-му столбцу, второй на элемент b21 и вновь прибавим к (n+1)-му столбцу. Так же обнулим остальные элементы матрицы B. Записав подробнее полученный определитель имеем: Δ=|a11a12a1nc11c12c1na21a22a2nc21c22c2nan1an2anncn1cn2cnn100000010000001000| Снова вычислим определитель Δ, разложением по последним n столбцам. В этом случае отличным от нуля минором nго порядка будет определитель матрицы C. Поэтому Δ=detCdet(E)=detC(1)n(1)S1+S2, где S1=2nk=n+1k, a S2=nk=1k. В результате получаем Δ=detC(1)2n(n2+n)=detC. Теперь, подставляя имеем доказательство теоремы: Δ=detC=det(AB)=det(A)det(B).

Замечание Известно, что произведение матриц в общем случае не коммутативно, т.е. ABBA. Но определитель это действительное число, а произведение действительных чисел коммутативно. Следовательно, det(AB)=detAdetB=detBdetA=det(BA)

Теорема об умножении определителей является следствием формулы Бине-Коши. Это теорема об определителе произведения прямоугольных матриц, в случае если это произведение дает квадратную матрицу. Справедлива для матриц с элементами любого коммутативного кольца.

Теорема (формула Бине-Коши). Пусть даны две матрицы A и B размеров (m×n) и (n×m) соответственно. Определитель матрицы равен нулю, если m>n, и равен сумме произведений всех соответствующих миноров m-го порядка мaтрицы A на соответствующие миноры m-го порядка матрицы B, если mn. Миноры матриц A и B одинакового порядка, равного наименьшему из чисел n и m, называются соответствующими друг другу, если они стоят в столбцах матрицы A и строках матрицы B с одинаковыми номерами: detAB=γ1<γ2<<γmAγ1<γ2<<γmBγ1<γ2<<γm,
где Aγ1<γ2<<γm — минор матрицы A, составленный из столбцов с номерами γ1<γ2<<γm, и Bγ1<γ2<<γm — минор матрицы B, составленный из строк с номерами γ1<γ2<<γm.

Допустим C=AB, cij=mγ=1aiγbγi. Значит detC=σ(1)σγ1a1γ1bγ1σ(1)γnanγnbγnσ(n)= =mγ1,,γn=1a1γ1annσ(1)σbγ1σ(1)bγnσ(n)=γ1,,γn=1a1γ1anγnBγ1γn. Минор Bγ1γn не равен нулю только в том случае, когда γ1,,γn попарно различны, значит и суммировать можно по парно различные номера γ1,,γn. Для любой перестановки τ этих номеров справедливо Bτ(γ1)τ(γn)=(1)τBγ1γn, из чего следует γ1,,γn=1a1γ1anγnBγ1γn=γ1<γ2<<γn(1)τa1τ(1)anτ(n)Bγ1γn= =γ1<γ2<<γmAγ1<γ2<<γmBγ1<γ2<<γm.

Примеры решения задач

Рассмотрим примеры решения задач связанных с рассмотренной теоремой. Читателю рекомендовано попытаться решить задачи самостоятельно, а затем сверить свое решение с приведенным ниже.

    1. Найти определитель произведения матриц: A=3418,B=2915

      Решение

      Находим определители данных матриц второго порядка: |3416|=18+4=14 и |2715|=107=3. По теореме об определителе произведения матриц получаем: det(AB)=det(A)det(B)=(14)(3)=42. Вычислим этот же определитель, находя произведение матриц: AB=|3416||2715|=|21423| Следовательно, det(AB)=46+4=42. Результаты совпадают.

    2. Найти определитель матрицы пятого порядка: M=12uvw34xyz003210025300342

      Решение

      Разобьём данную матрицу на 4 блока, M=ABOC где A=1234,
      B=uvwxyz, O=000000, C=321253342.
      Представим блочную матрицу как произведение (в справедливости этого представления можно убедиться, найдя произведение по правилам умножения блочных матриц). D=ABCD=E2OTOCE2BOE3AOTOE3, где E2,E3 — единичные матрицы соответствующих порядков.
      |AOTOE3|=detA=|A|, |E2OTOC|=detC=|C|.
      Матрица E2BOE3 — треугольная с единицами на главной диагонали, следовательно ее определитель равен 1 По теореме об определителе произведения получаем:
      |ABOC|=|E2OTOC| |E2BOE3| |AOTOE3|=|C|1|A|=|A||C| Найдем detA и detC. |1234|=2 |321253342|=15836+30+18=3. Подставляя, получаем, detM=23=6

    3. Представьте в виде определителя произведение определителей: |2111121111211112||4114||3113|
      Решение

      По теореме об определителе ступенчатой матрицы имеем:
      |4114||3113|=|4100140000310013| Предположим A=2111121111211112,B=4100140000310013,
      тогда AB=9644274455755515, по теореме об определителе произведения получаем искомый определитель det(AB)=|9644274455755515|.

Литература

  1. Белозеров Г.С. Конспект лекций по линейной алгебре.
  2. В.А. Ильин, Э.Г. Позняк. Линейная алгебра; 5-е изд., стереотипное. ФИЗМАТЛИТ. — 2002. С. 38-39
  3. А.И. Кострикин. Введение в алгебру. Основы алгебры С.138-139
  4. Курош А.Г. Курс высшей алгебры М.: Наука, 1968, С.93-95
  5. Фаддеев Д. К. Лекции по алгебре: Учебное пособие для вузов.— M.: Наука. Главная редакция физико-математической литературы, 1984.— 416 с. C. 130-134

Теорема об умножении определителей

Тест на знание темы «Теорема об умножении определителей».

Основная теорема арифметики

Теорема. Любое натуральное число больше единицы может быть разложено в виде простых множителей и это разложение единственно (если не учитывать порядок множителей).

Докажем существование такого разложения и то, что оно единственно.

Существование. Пусть nN,n>1 и мы имеем два варианта.Если n простое, и тогда разложение уже получено, либо n составное, а значит может быть представлено в виде n=p0a0, где p0 — наименьший делитель n. Допустим a0>1, а значит у нас снова два варианта. Либо a0 — простое, либо оно составное и может быть представлено как a0=p1a1, где p1 — наименьший делитель a0. Таким образом мы дойдем до am1=pmam, где am=1. Тогда n=p0p1p2pm, где pi,i=¯0,m является простым по лемме (1) о простоте наименьшего делителя.

Единственность. Пусть существуют два разложения числа nN,n>1 на простые множители. Тогда p1p2pn=q1q2qm. Так как p1p2pn разложение n, а значит является его делителем, то p1q1q2qm. Если точнее, оно делит qj,j=¯1,m.Но так как qj и p1 — простые, то это возможно только в том случае, если p1=qi. Так как порядок множителей не имеет значения, пусть это будет q1. И тогда мы можем сократить равенство на p1 и получим p2pn=q2qm. Повторяя рассуждения, мы придем к тому, что кончатся множители одного разложения (предположим что n<m) и мы получим такое равенство 1=qnqn+1qm. Однако, так как все множители — простые, а значит (по определению простого числа) найдено противоречие. Это доказывает единственность.

Так как в разложении целого числа могут оказаться одинаковые множители, то можно обозначить количество вхождений множителя его степенью : n=pa11pa22pann, где pipj при i,j=¯1,n,ij. Это называется каноническим разложением числа.

Примеры
  1. Каноническим разложением числа 100 будет 2252.
  2. Каноническим разложением числа 255 будет 3151171.
  3. Каноническим разложением числа 53 будет 531.

Тест на канонические разложения

Тест для проверки понимания изложенной выше темы.

Литература

  1. Электронный конспект по алгебре. Автор Белозеров.Г.С.
  2. И.М.Виноградов. Основы теории чисел. 6-ое издание, 1952 год. стр.20-22.
  3. Д.К.Фадеев. Лекции по алгебре. 1984 год. стр. 14-15.

Формула Муавра

Теорема. Допустим z=r(cosϕ+isinϕ) и n принадлежит множеству целых чисел. Тогда можно считать, что zn=rn(cos(nϕ)+isin(nϕ)).

Пусть n=2, где nZ — база индукции. Тогда z2=r(cosϕ+isinϕ)r(cosϕ+isinϕ)=r2(cos(2ϕ)+isin(2ϕ)).Допустим, что теорема верна nm,m2 и докажем, что она так же верна и для n=m+1. Тогда zm+1=zmz=rm(cos(mϕ)+isin(mϕ))r(cosϕ+isinϕ)= =rm+1(cos(m+1)ϕ+isin(m+1)ϕ). Для n=1 формула простая, а если n=0, то z=1, то есть z0=r0(cos(0ϕ)+isin(0ϕ))=1(cos0+isin0)=1. Следовательно, теорема справедлива n0. Докажем, что она так же справедлива n<0. Тогда zn=1zn=1(r(cosϕ+isinϕ))n= =1rn(cos(nϕ)+isin(nϕ))=rncos(nϕ)isin(nϕ)cos(nϕ)2+sin(nϕ)2= =r1cos(nϕ)+isin(nϕ)1=rn(cos(nϕ)+isin(nϕ)). Теорема доказана.

Следствие.|zn|=|z|nnZ,Arg(zn)=nArg(z)+2πk,kZ,nZ.

Примеры

Рассмотрим несколько примеров с использованием формулы Муавра.

  1. Вычислить 5(1+i)3(3+i)4i1323.
    Решение

    Найдём сначала r для (1+i)3: r=(1)2+12=2. Теперь найдём аргумент z для (1+i)3. Для этого нужно найти угол α: tanα=1,α=π4+kπ,kZ. Так как sinα<0 и cosα<0, то α=3π4.
    Теперь найдём r и z для (3+i)4: r=32+12=4=2. Найдём z:
    tanβ=13,β=π6+sπ,sZ. Так как sinβ>0 и cosβ>0, то β=π6. (1+i)3(3+i)4=(cos(9π4+4π6))+isin(9π4+4π6)= =cosπ12+isinπ12, i1323=i. По формуле ϕ+2πkn, где n=5, k=¯0,4 получаем:w0=52316(cos(π125)+isin(π125))=52316(cos(π60)+ +isin(π60)), w1=52316(cos(π12+2π5)+isin(π12+2π5))= =52316(cos(25π60)+isin(25π60)), w2=52316(cos(π12+4π5)+isin(π12+4π5))= =52316(cos(49π60)+isin(49π60)), w3=52316(cos(π12+6π5)+isin(π12+6π5))= =52316(cos(73π60)+isin(73π60)), w4=52316(cos(π12+8π5)+isin(π12+8π5))= =52316(cos(97π60)+isin(97π60)).

  2. Вычислить (3+i)2020.
    Решение

    tanα=33,α=π6+kπ,kZ. Так как sinβ>0 и cosβ>0, то β=π6. (3+i)2020=(2(cosπ6+isinπ6))2020= =22020(cos(2018+26π)+isin(2018+26π))= =22020(cosπ3+isinπ3)=22020(12+i32).

Смотрите также

  1. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 201-202).
  2. Личный конспект, основанный на лекциях Г. С. Белозёрова.

Формула Муавра

Проверим как Вы усвоили материал.