Достаточные условия экстремума

Экстремумы функций одной переменной

Определение:

Функция [latex]f:\mathbb{E} \subset \mathbb{R}\rightarrow \mathbb{R}[/latex], имеет во внутренней точке [latex]x_{0}[/latex]:

  • Локальный минимум, если [latex]\exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x)\ge f(x_{ 0 })[/latex]
  • Строгий локальный минимум, если [latex]\exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x) > f(x_{ 0 })[/latex]
  • Локальный максимум если [latex]\exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x)\le f(x_{ 0 })[/latex]
  • Строгий локальный максимум, если [latex]\exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x) < f(x_{ 0 })[/latex]

Поиск локальных и абсолютных экстремумов — важная практическая задача, породившая широкий спектр методов оптимизации. Изучение свойств и условий существования локального экстремума функций в одномерном случае создает прочный фундамент, упрощающий изучение аналогичного материала в анализе функций многих переменных.


Достаточные условия экстремума в терминах первой производной

Читать далее «Достаточные условия экстремума»

Признаки Абеля и Дирихле сходимости числовых рядов

Рассмотрим ряд:
$\sum\limits_{n=1}^{\infty}a_{n}b_{n}=a_{1}b_{1}+a_{2}b_{2}+…+a_{n}b_{n}+…$ $(1)$

где ${a_{n}}$ и ${b_{n}}$ — две последовательности вещественных чисел.

Следующие теоремы содержат достаточное условие сходимости ряда $(1)$.

Теорема (Признак Дирихле)

Ряд $(1)$ сходится, если выполнятся $2$ условия:

  1. Последовательность частичных сумм ряда $\sum\limits_{n=1}^{\infty}b_{n}$- ограничена, т.е $\exists$ $C > 0$ такое, что $|b_{1}+b_{2}+…+b_{n}| \leq C$, $\forall$ $n \in \mathbb{N}$.
  2. Последовательность ${a_{n}}$ монотонно стремится к нулю, т.е. $a_{n+1} \geq a_{n}$ $n \in \mathbb{N}$ или $a_{n+1} \leq a_{n}$ $n \in \mathbb{N}$ и $\lim\limits_{n \rightarrow \infty }a_{n} = 0$.

Доказательство

Покажем, что для ряда $\sum\limits_{n=1}^{\infty}a_{n}b_{n}$ выполняется условие Коши, т.е: $\forall$$\varepsilon>0$ $\exists$ $N_{\varepsilon}$: $\forall$$n\geq$$N_{\varepsilon}$,

$\forall$$p\epsilon$$N$$=>$ $|S_{n+p}-S_{n}|=$$|\sum\limits_{k=n+1}^{n+p}a_{k}b_{k}|<\varepsilon$

Пусть $A_{k}=a_{1}+a_{2}+…+a_{k}$, по условию $|A_{k}|<C$.

Используя преобразования Абеля, получим неравенства:

$|a_{n}b_{n}+a_{m+1}b_{m+1}+a_{m+2}b_{m+2}+…+a_{n-1}b_{n-1}+a_{n}b_{n}|=$
$=|b_{m}(A_{m}-A_{m-1})+b_{m+1}(A_{m+1}-A_{m})+b_{m+2}(A_{m+2}-A_{m+1})+…+b_{n-1}(A_{n-1}-A_{n-2})+b_{n}(A_{n}-A_{n-1})|=$
$=|-b_{m}A_{m-1}+(b_{m}-b_{m+1})A_{m}+(b_{m+1}-b_{m+2})A_{m+1}+…+(b_{n-1}-b_{n})A_{n-1}+b_{n}A_{n}|<$
$<b_{m}C+(b_{m}-b_{m-1})C+…+(b_{n-1}-b_{n})C+b_{n}C=2bmC<\varepsilon$, $m\geq$$n_{0}$; $|A_{k}|<C$

Следовательно, условия Коши выполнены, поэтому ряд сходится. $\blacksquare$

Спойлер

$\sum\limits_{n = 1}^{\infty}{\frac{\sin n\alpha }{n}}$.
Прежде всего, если $\alpha \neq 2\Pi m, m = 0, \pm 1, \pm 2, …$, то $\sum\limits_{ k = 1}^{n}{\sin k \alpha } = \sum\limits_{k = 1}^{n}{\frac{2\sin \frac{\alpha }{2}\sin k \alpha }{{2}\sin \frac{\alpha }{2}}} = \frac{\sum\limits_{k = 1}^{n}{\left[\cos k — \frac{1}{2} \alpha — \cos k + \frac{1}{2} \alpha\right]}}{2\sin \frac{\alpha }{2}} = \frac{\cos \frac{1}{2} \alpha — \cos n + \frac{1}{2} \alpha }{2\sin \frac{\alpha }{2}} = \frac{\sin \frac{n + 1}{2} \alpha \sin\frac{n}{2} \alpha }{ \sin \frac{\alpha }{2}}$ и следовательно, $\left|\sum\limits_{k = 1}^{n}{\sin k \alpha } \right|\leq \frac{1}{\left|\sin \frac{\alpha }{2} \right|}$. Если же $\alpha = 2\Pi m, m = 0, \pm 1, \pm 2, …$, то все члены сумм $\sum\limits_{k = 1}^{n}{\sin k \alpha }$ равны нулю, поэтому эти суммы при любом $n$ равны нулю и, следовательно , ограничены. Таким образом, при всех $\alpha$ суммы $\sum\limits_{k = 1}^{n}{\sin k \alpha }$ ограничены.

С другой стороны, последовательность $\frac{1}{n}$ монотонно убывает и стремится к нулю, поэтому, по признаку Дирихле, ряд $\sum\limits_{n = 1}^{\infty}{\frac{\sin n \alpha }{n}}$ сходится при любом $\alpha$.

Аналогично этому ряду исследуется ряд $\sum\limits_{n = 1}^{\infty}{\frac{\cos n \alpha }{n}}$. Так при $\alpha \neq 2\Pi m, m = 0, \pm 1, \pm 2, …$ справедливо равенство $\sum\limits_{ k = 1}^{n}{\cos k \alpha } = \frac{1}{2\sin \frac{\alpha }{2}}\sum\limits_{k = 1}^{n}{ 2\sin \frac{\alpha }{2} \cos k \alpha } = \frac{1}{2\sin \frac{\alpha }{2}}\sum\limits_{k = 1}^{n}{ \left[ \sin k + \frac{1}{2\alpha } — \sin k — \frac{1}{2} \alpha \right]} = \frac{\sin n + \frac{1}{2 }\alpha — \sin \frac{\alpha }{2}}{2 \sin \frac{\alpha }{2}} = \frac{\sin \frac{na}{2} \cos \frac{n + 1}{2} \alpha }{\sin \frac{\alpha }{2}}$, то для указанных $\alpha $ выполняется неравенство $\left|\sum\limits_{k = 1}^{n}{\cos k \alpha } \right|\leq \frac{1}{\left|\sin \frac{\alpha }{2} \right|}$ и, следовательно по принципу Дирихле , ряд $\sum\limits_{n = 1}^{\infty}{\frac{\cos n \alpha }{n}}$ сходится при всех $\alpha \neq 2\Pi m, m = 0, \pm 1, \pm 2, …$. Если же $\alpha = 2\Pi m, m = 0, \pm 1, \pm 2, …$, то ряд $\sum\limits_{n = 1}^{\infty}{\frac{\cos n \alpha }{n}}$ в отличие от ряда $\sum\limits_{n = 1}^{\infty}{\frac{\sin n \alpha }{n}}$ расходится, так как он превращается в гармонический ряд.

[свернуть]

Теорема (Признак Абеля)

Пусть дан ряд $(1)$. Он сходится, если выполняются $2$ условия:

  1. $\sum\limits_{n=1}^{\infty}b_{n}$- сходится.
  2. Числа {$a_{n}$} образуют монотонную и ограниченную последовательность, удовлетворяющую условиям $a_{n+1} \geq a_{n}$ или $a_{n+1} \leq a_{n}$ $n \in \mathbb{N}$.

Доказательство

По теореме о пределе монотонной ограниченной последовательности

$\exists$ $\lim\limits_{n\rightarrow\infty}a_{n}=a\Leftrightarrow$ $\lim_{n\rightarrow\infty}(a_{n}-a)=0\Rightarrow$ ${a_{n}-a}$- монотонно стремится к нулю.

Из сходимости $\sum\limits_{n=1}^{\infty}b_{n}\Rightarrow$ ${B_{n}}$- огр.
Тогда, по признаку Дирихле ряд: $\sum\limits_{n=1}^{\infty}(a_{n}-a)b_{n}$- сходится.
Отсюда следует, что $\sum\limits_{n=1}^{\infty}a_{n}b_{n}=\sum\limits_{n=1}^{\infty}(a_{n}-a)b_{n}+a\sum\limits_{n=1}^{\infty}b_{n}$- сходится, как сумма двух рядов.
Теорема доказана. $\blacksquare$

Спойлер

$\sum\limits_{n = 2}^{\infty}{\frac{\sin n \alpha \cos \frac{\Pi }{n}}{\ln \ln n}}$

Заметим, что ряд $\sum\limits_{n = 2}^{\infty}{\frac{\sin n \alpha }{\ln \ln n}}$ сходится согласно признаку Дирихле: Последовательность $\frac{1 }{\ln \ln n}$ монотонно стремится к нулю, а последовательность частичных сумм ряда $\sum\limits_{n = 2}^{\infty}{\sin n \alpha }$ ограничена.

Последовательность $\cos \frac{\Pi }{n}, n = 2,3 … $, монотонна, поэтому, по признаку Абеля, ряд $\sum\limits_{n = 2}^{\infty}{\frac{\sin n \alpha \cos \frac{\Pi }{n}}{\ln \ln n}}$ сходится при всех $\alpha $.

[свернуть]

Тест на тему: Признаки Абеля и Дирихле

Тест на тему: признаки Абеля и Дирихле.


Таблица лучших: Тест на тему: Признаки Абеля и Дирихле

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Достаточные условия экстремума функции двух переменных

Дифференциальное исчисление функций многих переменных — важный раздел анализа, имеющий немало приложений в физике, инженерии и прикладной математике. Существенное количество практических задач формулируется в терминах функций от двух переменных — явном выражении поверхностей в пространстве [latex]\mathbb{R}^{3}[/latex]. В классических курсах анализа их изучают с более общих позиций, рассматривая достаточные критерии экстремума функций вида [latex]f: \mathbb{R}^{n} \rightarrow \mathbb{R}[/latex] (также называемых скалярными полями), в терминах которых ведётся дальнейшее изложение.


Определение

Говорят, что функция [latex]f: \mathbb{E} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}[/latex] имеет во внутренней точке [latex]x_{0}[/latex]

  • локальный минимум, если [latex]\exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \le f(x_{0})[/latex].
  • локальный максимум, если [latex]\exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \ge f(x_{0})[/latex].

Заменой неравенств на строгие получаем условия соответственно строгого локального минимума и максимума.


Определение

Якобианом векторного поля [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \forall x \in \mathbb{R}^{m} f(x) = (f_{1}(x),…,f_{m}(x))[/latex], дифференцируемого в точке [latex]x[/latex] и непрерывного в некоторой её окрестности [latex]U(x) \in \mathbb{R}^{m}[/latex]называют линейный оператор [latex]\mathbf{J}[/latex], описывающий наилучшее линейное приближение функции в некоторой окрестности точки [latex]x[/latex] и имеющий матрицу вида:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f_{ 1 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 1 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{ 1 } }{ \partial x_{ m } } (x) \\ \frac { \partial f_{ 2 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 2 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{2} }{ \partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial f_{m} }{ \partial x_{ 1 } } (x) & \frac { \partial f_{m} }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{m} }{ \partial x_{ m }} (x) \end{Vmatrix} $$

— так называемую матрицу Якоби (матрица касательного отображения). Для скалярного поля матрица Якоби имеет вид:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f }{ \partial x_{ 1 } } (x) & \frac { \partial f }{ \partial x_{ 2 } } (x) & … & \frac { \partial f }{ \partial x_{ m } } (x) \end{Vmatrix} $$

Определение

Гессианом скалярного поля [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}[/latex], дважды дифференцируемого по всем аргументам в точке [latex]x=(x^{1},…,x^{m}) \in \mathbb{R}^{m}[/latex], называют симметрическую квадратичную форму [latex]H(x)=\sum _{ i=1 }^{ m }{ \sum _{ j=1 }^{ m }{ h_{ij}x_{i}x_{j} } } [/latex], описывающую наилучшее квадратичное приближение функции в некоторой окрестности точки [latex]x[/latex] и имеющую матрицу вида:

$$ \mathbf{H}_{f}(x) = \begin{Vmatrix} \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }^{ 2 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ m } } (x) \\ \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }^{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ m }^{ 2 } } (x) \end{Vmatrix} $$

— так называемую матрицу Гессе, определитель которой обычно подразумевается под Гессианом. Матрица Гессе также описывает локальную кривизну скалярного поля.


Утверждение

Поведение функция [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}[/latex], дважды дифференцируемой в точке [latex]x=(x^{1},…,x^{m}) \in \mathbb{R}^{m}[/latex] и непрерывной в некоторой окрестности [latex]U(x) \subset \mathbb{R}[/latex] этой точки, характеризуется формулой:

$$ f(\mathbf{x}+\mathbf{\Delta x}) \approx f(x) + \mathbf{J(x)\Delta x} + \frac{1}{2} \mathbf{\Delta x^{T} H(x) \Delta x} $$

Достаточное условие экстремума в терминах частных производных

Для того, чтобы функция [latex]f: U(x_{0}) \rightarrow \mathbb{R}[/latex], дважды дифференцируемая по всем аргументам в точке [latex]x_{0}=(x_{0}^{1},…,x_{0}^{m}) \in \mathbb{R}^{m}[/latex], в ней имела экстремум достаточно, чтобы её Гессиан был знакоопределён, причем, положительная определённость влечёт наличие в точке строгого локального минимума, отрицательная определённость — строгого локального максимума.

Спойлер

Воспользуемся разложением в ряд Тейлора, обозначив вектор сдвига как [latex]\mathbf{h}=(h_{1},…,h_{m})[/latex]. Тогда

$$ f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + \frac{1}{2!} \mathbf{h^{T} H(x) h} + \underline{o}((\left\| \mathbf{h} \right\|)^{2}),\left\| h \right\| =\sqrt { \sum _{ i=1 }^{ n }{ h_{ i }^{ 2 } } } \\ f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + \sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}}h_{i}h_{j}}} + \underline{o}((\left\| \mathbf{h} \right\|)^{2}) \\ f(\mathbf{x}+\mathbf{h}) — f(\mathbf{x}) = \frac {1}{2!} \left\| \mathbf{h} \right\|^{2}\left[\sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}} \frac{h_{i} } { \left\| \mathbf{h} \right\| } \frac{ h_{j}} {\left\| \mathbf{h} \right\|}}} + \underline{o}(1) \right] $$

Отсюда следует, что знак выражения в левой части, позволяющий судить о наличии или отсутствии экстремума в точке [latex]\mathbf{x}[/latex], определяется знаком выражения в квадратных скобках. Посмотрим на неё внимательнее: пусть [latex]\mathbf{h} != 0[/latex], тогда вектор [latex]{ e }=\left( \frac { h_{ 1 } }{ \left\| { h } \right\| } ,\frac { h_{ 2 } }{ \left\| { h } \right\| } ,…,\frac { h_{ m } }{ \left\| { h } \right\|} \right) [/latex] имеет единичную норму [latex]\left\| { e } \right\| = 1[/latex], каким бы он ни был. Форма [latex]\sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}} \frac{h_{i} } { \left\| \mathbf{h} \right\| } \frac{ h_{j}} {\left\| \mathbf{h} \right\|}}}[/latex] непрерывна на [latex]\mathbb{R}^{m}[/latex] как однородный многочлен второй степени от координат [latex]\mathbf{h}[/latex] в силу непрерывности вторых производных [latex]f[/latex] в окрестности [latex]\mathbf{x}[/latex]. Квадратичная форма непрерывна и на единичной сфере [latex]S(0;1)=\left\{ x \in \mathbb{R}^{m}| \left\| { x } \right\| \le 1 \right\} [/latex]. Приниципиальный интерес этот факт представляет по той причине, что единичная сфера — компакт, а свойства скалярных функций, непрерывных на компакте, хорошо известны и сыграют важную роль. В частности, непрерывная на компакте функция достигает на нём своих точных верхней и нижней граней [latex]m[/latex] и [latex]M[/latex].
Если форма положительно определена, то [latex]0 0[/latex], что [latex]\forall y: \left\| y \right\| < \delta \quad \underline { o } (1)=\alpha (y) < m \Rightarrow \underline { o } (1) < m 0[/latex].
Доказательство для случая отрицательно определённой квадратичной формы симметрично приведенному.
Докажем далее, что значения разных знаков, принимаемые формой в окрестности данной точки, являются достаточным условием отсутствия в ней экстремума функции. Сохраняя обозначения предыдущего пункта, назовём [latex]\mathbf{e_{m}}[/latex] и [latex]\mathbf{e_{M}}[/latex] точки единичной сфера, в которых форма достигает значений [latex]m[/latex] и [latex]M[/latex] соответственно, причем пусть [latex]m < 0 < M[/latex].
Вновь выпишем разложение в ряд Тейлора функции [latex]f[/latex], взяв за вектор сдвига вектор [latex]t\mathbf{e_{m}}[/latex], где число [latex]t[/latex] подобрано таким образом, чтобы [latex]\mathbf{x}+t\mathbf{e_{m}} \in U(x)[/latex]:

$$ f({ x }+{ h })-f({ x })=\frac { 1 }{ 2! } \left\| { te_{ m } } \right\| ^{ 2 }\left[ m+\underline { o } (1) \right] =\frac { 1 }{ 2! } (\left| t \right| \left\| { e_{ m } } \right\| )^{ 2 }\left[ m+\underline { o } (1) \right] =\frac { 1 }{ 2! } t^{ 2 }\left[ m+\underline { o } (1) \right] $$

Аналогично рассуждениям предыдущего пункта, рассмотрим случай [latex]\text{sign}(\underline {o}(1))=1[/latex]: [latex]\lim _{ \left\| t \right\| \rightarrow 0}{ \alpha (t\mathbf{e_{m}}) } = 0 \Rightarrow \exists \delta > 0: \forall t m[/latex]. Тогда значение в квадратных скобках, как и выражение в левой части, неположительно. В ходе аналогичных рассуждений получим двойственную ситуацию для [latex]\mathbf{e_{M}}[/latex]. Следовательно, в любой окрестности [latex]U(\mathbf{x})[/latex] точки [latex]\mathbf{x}[/latex] функция [latex]f[/latex] принимает значения, как большие, так и меньше [latex]f(\mathbf{x})[/latex], следовательно, в точке [latex]\mathbf{x}[/latex] экстремума быть не может по определению.

[свернуть]

Замечание 1

Условие не является необходимым, так как ничего не говорит о случае, когда квадратичная форма полуопределена, т.е. является и неположительна или неотрицательна, т.е. содержит критические точки, не являющиеся экстремальными, строго больше или меньше нуля на всех векторах окрестности.

Спойлер

Исследуем на экстремум функцию [latex]f(x,y)=x^{4}+y^{4}-2x^{2}[/latex]. Отыщем критические точки согласно необходимому условию:

$$ \begin{cases} \frac { \partial f }{ \partial x } (x,y)=4x^{ 3 }-4x=0, \\ \frac { \partial f }{ \partial x } (x,y)=4y^{ 3 }=0; \end{cases} $$

Решаяя систему, получаем точки: [latex](-1,0),(0,0),(1,0)[/latex]. Поскольку смешанные производные существуют и непрерывны и

$$ \frac { \partial f^{ 2 } }{ \partial x^{ 2 } } (x,y)=12x^{ 2 }-4, \frac { \partial f^{ 2 } }{ \partial y\partial x } (x,y)=0, \frac { \partial f^{ 2 } }{ \partial y^{ 2 } } (x,y)=12y^{ 2 } $$

матрица Гессе имеет вид

$$ { H }_{ f }(x,y)=\begin{Vmatrix} 12x^{ 2 }-4 & 0 \\ 0 & 12y^{ 2 } \end{Vmatrix} $$

Используя критерий Сильвестра, убедитесь, что в указанных трёх точках квадратичная форма полуопределена. Несмотря на то, что достаточный критерий экстремума в терминах квадратичного приближения неприменим, из записи функции в виде [latex]f(x,y)=(x^{2}-1)^{2}+y^{4}-1[/latex] очевидно, что в точках [latex](\pm 1, 0)[/latex] функция (симметричная и монотонно возрастающая по обеим переменным) имеет строгий локальный минимум, а в точке [latex](0, 0)[/latex] не имеет экстремума вовсе.
Нижеприведенное изображение наглядно демонстрирует правильность выводов. Нормалями к поверхности обозначены стационарные точки.
Example_Top_View

[свернуть]

Замечание 2

Функция может принимать экстремальные значения в граничных точках области определения. Вышеприведенное достаточное условие для их выявления использовать не рекомендуется, следует обратиться к аппарату теории условного экстремума.


Пример (Демидович, №3629)

Исследовать на локальный экстремум функцию

$$ z = x y \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}} \quad (a > 0, \quad b > 0) $$

Спойлер

Вычислим первые частные производные. Решением нижеприведенной системы

$$ z^{ ‘ }_{ x }=\frac { y\left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } \right) }{ \sqrt { 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } } }, \quad z^{ ‘ }_{ y }=\frac { y\left( 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { 2y^{ 2 } }{ b^{ 2 } } \right) }{ \sqrt { 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } } } $$

находим стационарные точки

$$(0,0),\quad \left( \frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( -\frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( \frac { a }{ \sqrt { 3 } } ,-\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( -\frac { a }{ \sqrt { 3 } } ,-\frac { b }{ \sqrt { 3 } } \right) $$

Отметим, что в точках, лежащих на границе эллипса [latex]1=\frac{x^2}{a^2}+\frac{y^2}{b^2}[/latex] частные производные не существуют, следовательно, их следует отдельно проверить на экстремум, что выходит за рамки аппарата данной статьи.

Для проверки достаточных условий выпишем вторые производные

$$ z^{ » }_{ x^{ 2 } }=\frac { -\frac { xy }{ a^{ 2 } } \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right)}{ \left(1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right)^{\frac{3}{2}} }, \quad z^{ » }_{ y^{ 2 } }=\frac { -\frac { xy }{ b^{ 2 } } \left( 1-\frac { 3x^{ 2 } }{ a^{ 2 } } -\frac { 2y^{ 2 } }{ b^{ 2 } } \right) }{ \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right) ^{ \frac { 3 }{ 2 } } }, \\ z^{ » }_{ xy }=\frac { 1+\frac { 2x^{ 4 } }{ a^{ 4 } } +\frac { 3x^{ 2 }y^{ 2 } }{ a^{ 2 }b^{ 2 } } +\frac { 2y^{ 4 } }{ b^{ 4 } } -\frac { 3x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } }{ \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right) ^{ \frac { 3 }{ 2 } } } $$
  1. Точка [latex] (0,0) [/latex] не является точкой условного экстремума
    $$ \mathbf{ H }_{ z }(0,0)=\begin{Vmatrix} 0 & 1 \\ 1 & 0 \end{Vmatrix},\quad \Delta_{1}=0,\quad \Delta_{2}=-1 $$
  2. Заметим, что функция [latex]z(x,y)[/latex] чётна, а также [latex]z \left( \frac { -a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) = z \left( \frac { a }{ \sqrt { 3 } } ,\frac { -b }{ \sqrt { 3 } } \right)[/latex].

    Точки [latex] (\pm \frac { a }{ \sqrt { 3 } }, \pm \frac { b }{ \sqrt { 3 } }) [/latex] являются точками условного экстремума

    $$ { H }_{ z }(\frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } )=\begin{Vmatrix} -\frac { 4b }{ \sqrt { 3 } a } & -\frac { 2 }{ \sqrt { 3 } } \\ -\frac { 2 }{ \sqrt { 3 } } & -\frac { 4a }{ \sqrt{3}b} \end{Vmatrix},\quad \Delta _{ 1 }=-\frac { 4b }{ \sqrt { 3 } a } 0 $$ $$ { H }_{ z }(\frac { -a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } )=\left( \begin{array}{cc} \frac { 4b }{ \sqrt { 3 } a } & -\frac { 2 }{ \sqrt { 3 } } \\ -\frac { 2 }{ \sqrt { 3 } } & \frac { 4a }{ \sqrt { 3 } b } \end{array} \right) ,\Delta _{ 1 }=\frac { 4b }{ \sqrt { 3 } a } >0, \quad \Delta _{ 1 }=\frac { 16 }{ 3 } — \frac{4}{3} = 4 > 0 $$

    Соответственно, [latex]\left(\pm \frac {a}{ \sqrt { 3 } } , \pm \frac { b }{ \sqrt { 3 } } \right)[/latex] — точки минимума, [latex]\left(\pm \frac {a}{ \sqrt { 3 } } , \mp \frac { b }{ \sqrt { 3 } } \right)[/latex] — точки максимума.

  3. Пример: [latex]a = b = 2[/latex]
    Elliptic_Surface_a_b_2

[свернуть]

Источники:

Закрепление материала.

Таблица лучших: Достаточные условия экстремума функции многих переменных

максимум из 23 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Следствие (Формула Тейлора с остатком в форме Пеано)

Формулировка

Пусть  $ U \subset \mathbb{R}^{n}$  —  открытая окрестность точки  $ x \in \mathbb{R}^{n}$  и функция  $ f: U \rightarrow \mathbb{R}$  имеет в   $ U $  непрерывные частные производные по всем переменным до порядка  $m$  включительно.

Пусть также  $ h \in \mathbb{R}^{n}$  и  $ \left[ x..x+h \right] \subset U$ . Тогда справедливо представление

$$
f\left( x+h \right) — f\left( x \right) =
\sum_{k=1}^{m} \frac{1}{k!}
\sum_{i_{1},\cdots,i_{k}=1}^{n} \frac{\partial^{k}f }{\partial x_{i_1} \cdots \partial x_{i_k} } \left( x \right)
h_{i_1} \cdots h_{i_k} +
o \left(\left| h \right|^m\right)
$$
при $ \left| h \right| \rightarrow 0 $, где $ \left| h \right| = \sqrt{h_{1}^{2} + \cdots h_{n}^{2}}$.

Доказательство

В условиях текущей теоремы справедлива теорема о формуле Тейлора с остаточным членом в форме Лагранжа:
$$ f\left( x+h \right) — f\left( x \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \frac{\partial^{k}f }{\partial x_{i_{1}} \cdots \partial x_{i_{k}} } \left( x \right) h_{i_{1}} \cdots h_{i_{k}} + r_{m}\left(x\right) ~~~~~~~~~~ \left( * \right) $$

где при некотором  $ \theta \in \left(0 .. 1 \right)$

$$ r_{m}\left(x\right) = \frac{1}{m!} \sum_{i_{1},\cdots,i_{m}=1}^{n} \frac{\partial^{m}f }{\partial x_{i_{1}} \cdots \partial x_{i_{m}} } \left( x + \theta h \right) h_{i_{1}} \cdots h_{i_{m}} $$

По условию, все производные функции $ f $ до порядка $ m $ включительно непрерывны в окрестности $ U $. Значит, справедливо представление
$$ \frac{\partial^m f}{\partial x_{i_1} \cdots \partial x_{i_m}} \left( x + \theta h \right) = \frac{\partial^m f}{\partial x_{i_1} \cdots \partial x_{i_m}}\left( x \right) + \alpha_{i_1, \cdots i_m}\left( x \right) $$
где каждая из функций $ \alpha_{i_1, \cdots i_m}$ является бесконечно малой при $ \left| h \right| \rightarrow 0 $.
При каждом $ i = \overline{1,m} $, очевидно, справедливо неравенство
$$ \left| h_i \right| = \sqrt{h_{i}^{2}} \leq \sqrt{h_{1}^{2} + \cdots h_{n}^{2}} = \left| h \right| ~~~ \Rightarrow ~~~ \left|h_{i_{1}} \cdots h_{i_{m}} \right| \leq \left| h \right| ^ m ~~~~~~~~~~ \left( ** \right)$$
А тогда при $ \left| h \right| \rightarrow 0 $ имеем:
$$ \alpha_{i_1, \cdots i_m}\left(x\right) h_{i_{1}} \cdots h_{i_{m}} = {o}\left(\left| h \right|^m\right) ~~~ \Rightarrow ~~~ \sum_{i_{1},\cdots,i_{k}=1}^{n} \alpha_{i_1, \cdots i_m} \left(x\right)h_{i_{1}} \cdots h_{i_{m}} = {o}\left(\left| h \right|^m\right) ~~~~~~~~~~ \left( *** \right)$$
Подставим $ \left( ** \right) $ и $ \left( *** \right) $ в исходную формулу для остатка в форме Лагранжа: при $ \left| h \right| \rightarrow 0 $
$$ r_{m}\left(x\right) = \frac{1}{m!} \sum_{i_{1},\cdots,i_{m}=1}^{n} \frac{\partial^m f}{\partial x_{i_1} \cdots \partial x_{i_m}}\left( x \right) h_{i_{1}} \cdots h_{i_{m}} + \frac{1}{m!} \sum_{i_{1},\cdots,i_{m}=1}^{n} \alpha_{i_1, \cdots i_m}\left(x\right) h_{i_{1}} \cdots h_{i_{m}} = $$
$$ = \frac{1}{m!} \sum_{i_{1},\cdots,i_{m}=1}^{n} \frac{\partial^m f}{\partial x_{i_1} \cdots \partial x_{i_m}}\left( x \right) h_{i_{1}} \cdots h_{i_{m}} + {o}\left(\left| h \right|^m\right) $$
Наконец, подставив полученное выражение для остатка в формулу $ \left( * \right) $, получим доказываемую формулу.

Примеры

Рассмотрим два разложения по формуле Тейлора с остатком в форме Пеано в окрестности нуля: при $ x^2 + y^2 \rightarrow 0 $
$ e^{x^2 + y} = 1 + y + x^2 + \frac{1}{2}y^2 + x^2 y + \frac{1}{6}y^3 + {o}\left(\left( \sqrt{x^2 + y^2} \right)^3\right) $
$ e^x \sin y = y + xy — \frac{1}{6}y^3 + \frac{1}{2}x^2 y + {o}\left(\left( \sqrt{x^2 + y^2} \right)^3\right) $

Тест для закрепления материала

Формула Тейлора с остатком в форме Лагранжа

Формулировка

Пусть  [latex] U \subset \mathbb{R}^{n}[/latex]  —  открытая окрестность точки  [latex] x \in \mathbb{R}^{n}[/latex]  и функция  [latex] f: U \rightarrow \mathbb{R}[/latex]  имеет в   [latex] U [/latex]  непрерывные частные производные по всем переменным до порядка  [latex]m[/latex]  включительно.

Пусть также  [latex] h \in \mathbb{R}^{n}[/latex]  и  [latex] \left[ x..x+h \right] \subset U[/latex] . Тогда справедливо представление

$$ f\left( x+h \right) — f\left( x \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \frac{\partial^{k}f }{\partial x_{i_{1}} \cdots \partial x_{i_{k}} } \left( x \right) h_{i_{1}} \cdots h_{i_{k}} + r_{m}\left(x\right) $$

где при некотором  [latex] \theta \in \left(0 .. 1 \right)[/latex]

$$ r_{m}\left(x\right) = \frac{1}{m!} \sum_{i_{1},\cdots,i_{m}=1}^{n} \frac{\partial^{m}f }{\partial x_{i_{1}} \cdots \partial x_{i_{m}} } \left( x + \theta h \right) h_{i_{1}} \cdots h_{i_{m}} $$

Доказательство

Доказательство многомерного случая теоремы сводится к одномерному случаю посредством введения дополнительной функции
$$ \phi \colon  \left[ 0, 1 \right] \rightarrow \mathbb{R} $$
$$ \phi \left( t \right) = f\left( x + th \right) $$
По теореме о дифференцируемости сложной функции, функция  [latex] \phi [/latex]  дифференцируема на [latex] \left[ 0, 1 \right] [/latex] и её первая производная есть
$$ \phi ^ {\left( 1 \right)} \left( t \right) =  \sum_{i_{1}=1}^{n} \frac{\partial f }{\partial x_{i_{1}}} \left( x + t h \right) h_{i_{1}}$$
Аналогично, для второй производной справедлива формула
$$ \phi ^ {\left( 2 \right)} \left( t \right) =  \sum_{i_{1},i_{2}=1}^{n} \frac{\partial^{k} f }{\partial x_{i_{1}} \partial x_{i_{2}}} \left( x + t h \right) h_{i_{1}} h_{i_{2}}$$
По индукции получаем, что при любом [latex] k = \overline{1,m} [/latex]
$$ \phi ^ {\left( k \right)} \left( t \right) = \sum_{i_{1},\cdots,i_{k}=1}^{n} \frac{\partial^{k}f }{\partial x_{i_{1}} \cdots \partial x_{i_{k}} } \left( x \right) h_{i_{1}} \cdots h_{i_{k}} $$
Применим к функции  [latex] \phi [/latex]  одномерную теорему о формуле Тейлора с остаточным членом в форме Лагранжа. Согласно этой теореме, существует число  [latex] \theta \in \left(0 .. 1 \right)[/latex], такое, что
$$ \phi \left( t \right) — \phi \left( 0 \right) = \sum_{k=1}^{m-1} \frac{\phi ^ {\left( k \right)} \left( 0 \right)}{k!} t^{k} + \frac{t^m}{m!}\phi ^ {\left( m \right)} \left( {\theta t} \right) $$
Полагая  [latex] t = 1 [/latex], получаем:
$$ \phi \left(1\right) — \phi \left( 0 \right) = \sum_{k=1}^{m-1} \frac{\phi ^ {\left( k \right)} \left( 0 \right)}{k!} + \frac{1}{m!}\phi ^ {\left( m \right)} \left( {\theta} \right) $$
Вычислив  [latex] \phi \left( 0 \right) = f\left( x \right)[/latex]  и  [latex] \phi \left( 1 \right) = f\left( x+h \right) [/latex]  и подставив в формулу выражения для производных  [latex] \phi ^ {\left( k \right)} [/latex], найденные выше, получим доказываемую формулу.

Замечания

Замечание  1. Нетрудно заметить, что
$$ \sum_{i_{1},\cdots,i_{k}=1}^{n} \frac{\partial^{k}f }{\partial x_{i_{1}} \cdots \partial x_{i_{k}} } \left( x \right) h_{i_{1}} \cdots h_{i_{k}} = \left(h_{1} \frac{\partial}{\partial x_{1}} + \cdots + h_{n} \frac{\partial}{\partial x_{n}}\right) ^{k} f \left( x \right) $$
Это наблюдение позволяет записать основную формулу теоремы Тейлора в более эстетичной, с точки зрения некоторых, форме:
$$ f\left( x+h \right) — f\left( x \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \left(h_{1} \frac{\partial}{\partial x_{1}} + \cdots + h_{n} \frac{\partial}{\partial x_{n}}\right) ^{k} f \left( x \right) + r_{m}\left(x\right) $$

Замечание  2. Рассмотрим общий вид формулы Тейлора для случая функции двух переменных:
$$  f\left(x + h_1, y + h_2 \right) — f\left( x,y \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \left(h_{1} \frac{\partial}{\partial x} + h_{2} \frac{\partial}{\partial y}\right) ^{k} f \left( x, y \right) + r_{m}\left(x,y\right) $$
$$  f\left(x + h_1, y + h_2 \right) — f\left( x, y \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \sum_{p=0}^{k} C_{k}^{p} \frac{\partial^{k} f}{\partial x^{k-p} \partial y^{p}}\left(x, y \right) h_{1}^{k-p} h_{2}^{p} + r_{m}\left(x,y\right) $$

Замечание  3. Если в качестве точки [latex] x [/latex] взять точку [latex] \left(0, \cdots, 0 \right) [/latex], то формулу Тейлора называют формулой Маклорена.

Замечание  4. Формулу Тейлора можно использовать для приближённого вычисления значений рассматриваемой функции. В частности, если рассматривать разложение до членов первого порядка включительно, то получаем очень простую геометрическую интерпретацию: график функции «приближается» некоторой гиперплоскостью. В случае двух переменных речь идёт об обычной плоскости и описанную ситуацию можно схематично изобразить так:
taylor

Пример

Разложим по формуле Тейлора до членов второго порядка включительно функцию [latex] f \left( x, y \right) = e ^ {-\left(x^2 + y^2 \right)}[/latex] в окрестности точки [latex] \left( 1, 2 \right) [/latex]
Поскольку речь идёт о членах второго порядка, нам понадобятся производные вплоть до того же порядка. Найдём производные и вычислим их значения в точке разложения:
$$ f \left( 1, 2 \right) = e ^ {-5} $$
$$\frac{\partial f}{\partial x}\left(x, y\right) = -2x e ^ {-\left(x^2 + y^2 \right)} ~~~~~~~~ \frac{\partial f}{\partial x}\left(1, 2\right) = -2e ^ {-5}$$
$$\frac{\partial f}{\partial x}\left(x, y\right) = -2y e ^ {-\left(x^2 + y^2 \right)} ~~~~~~~~ \frac{\partial f}{\partial x}\left(1, 2\right) = -4e ^ {-5}$$
$$\frac{\partial ^ 2 f}{\partial x^2}\left(x, y\right) = \left(-2 + 4x^2 \right) e ^ {-\left(x^2 + y^2 \right)} ~~~~~~~~ \frac{\partial ^ 2 f}{\partial x^2}\left(1, 2\right) = 2 e ^ {-5} $$
$$\frac{\partial ^ 2 f}{\partial y^2}\left(x, y\right) = \left(-2 + 4y^2 \right) e ^ {-\left(x^2 + y^2 \right)} ~~~~~~~~ \frac{\partial ^ 2 f}{\partial y^2}\left(1, 2\right) = 14 e ^ {-5} $$

$$\frac{\partial ^ 2 f}{\partial x \partial y}\left(x, y\right) = \frac{\partial ^ 2 f}{\partial y \partial x}\left(x, y\right) = 4xy e ^ {-\left(x^2 + y^2 \right)} ~~~~~ \frac{\partial ^ 2 f}{\partial x \partial y}\left(1, 2\right) = \frac{\partial ^ 2 f}{\partial y \partial x} \left(1, 2\right) = 8e ^ {-5}$$

Искомое разложение:
$$f \left(x, y\right) \approx e ^ {-5} \left(1 — 2\left(x-1\right) — 4\left( y-2\right) + \left(x-1\right)^2 + 7\left(y-2\right)^2 + 8\left(x-1\right)\left(y-2\right) \right) $$

Проверьте, насколько хорошо Вы знаете многомерные ряды Тейлора.