Формула Тейлора с остатком в форме Лагранжа

Формулировка

Пусть  [latex] U \subset \mathbb{R}^{n}[/latex]  —  открытая окрестность точки  [latex] x \in \mathbb{R}^{n}[/latex]  и функция  [latex] f: U \rightarrow \mathbb{R}[/latex]  имеет в   [latex] U [/latex]  непрерывные частные производные по всем переменным до порядка  [latex]m[/latex]  включительно.

Пусть также  [latex] h \in \mathbb{R}^{n}[/latex]  и  [latex] \left[ x..x+h \right] \subset U[/latex] . Тогда справедливо представление

$$ f\left( x+h \right) — f\left( x \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \frac{\partial^{k}f }{\partial x_{i_{1}} \cdots \partial x_{i_{k}} } \left( x \right) h_{i_{1}} \cdots h_{i_{k}} + r_{m}\left(x\right) $$

где при некотором  [latex] \theta \in \left(0 .. 1 \right)[/latex]

$$ r_{m}\left(x\right) = \frac{1}{m!} \sum_{i_{1},\cdots,i_{m}=1}^{n} \frac{\partial^{m}f }{\partial x_{i_{1}} \cdots \partial x_{i_{m}} } \left( x + \theta h \right) h_{i_{1}} \cdots h_{i_{m}} $$

Доказательство

Доказательство многомерного случая теоремы сводится к одномерному случаю посредством введения дополнительной функции
$$ \phi \colon  \left[ 0, 1 \right] \rightarrow \mathbb{R} $$
$$ \phi \left( t \right) = f\left( x + th \right) $$
По теореме о дифференцируемости сложной функции, функция  [latex] \phi [/latex]  дифференцируема на [latex] \left[ 0, 1 \right] [/latex] и её первая производная есть
$$ \phi ^ {\left( 1 \right)} \left( t \right) =  \sum_{i_{1}=1}^{n} \frac{\partial f }{\partial x_{i_{1}}} \left( x + t h \right) h_{i_{1}}$$
Аналогично, для второй производной справедлива формула
$$ \phi ^ {\left( 2 \right)} \left( t \right) =  \sum_{i_{1},i_{2}=1}^{n} \frac{\partial^{k} f }{\partial x_{i_{1}} \partial x_{i_{2}}} \left( x + t h \right) h_{i_{1}} h_{i_{2}}$$
По индукции получаем, что при любом [latex] k = \overline{1,m} [/latex]
$$ \phi ^ {\left( k \right)} \left( t \right) = \sum_{i_{1},\cdots,i_{k}=1}^{n} \frac{\partial^{k}f }{\partial x_{i_{1}} \cdots \partial x_{i_{k}} } \left( x \right) h_{i_{1}} \cdots h_{i_{k}} $$
Применим к функции  [latex] \phi [/latex]  одномерную теорему о формуле Тейлора с остаточным членом в форме Лагранжа. Согласно этой теореме, существует число  [latex] \theta \in \left(0 .. 1 \right)[/latex], такое, что
$$ \phi \left( t \right) — \phi \left( 0 \right) = \sum_{k=1}^{m-1} \frac{\phi ^ {\left( k \right)} \left( 0 \right)}{k!} t^{k} + \frac{t^m}{m!}\phi ^ {\left( m \right)} \left( {\theta t} \right) $$
Полагая  [latex] t = 1 [/latex], получаем:
$$ \phi \left(1\right) — \phi \left( 0 \right) = \sum_{k=1}^{m-1} \frac{\phi ^ {\left( k \right)} \left( 0 \right)}{k!} + \frac{1}{m!}\phi ^ {\left( m \right)} \left( {\theta} \right) $$
Вычислив  [latex] \phi \left( 0 \right) = f\left( x \right)[/latex]  и  [latex] \phi \left( 1 \right) = f\left( x+h \right) [/latex]  и подставив в формулу выражения для производных  [latex] \phi ^ {\left( k \right)} [/latex], найденные выше, получим доказываемую формулу.

Замечания

Замечание  1. Нетрудно заметить, что
$$ \sum_{i_{1},\cdots,i_{k}=1}^{n} \frac{\partial^{k}f }{\partial x_{i_{1}} \cdots \partial x_{i_{k}} } \left( x \right) h_{i_{1}} \cdots h_{i_{k}} = \left(h_{1} \frac{\partial}{\partial x_{1}} + \cdots + h_{n} \frac{\partial}{\partial x_{n}}\right) ^{k} f \left( x \right) $$
Это наблюдение позволяет записать основную формулу теоремы Тейлора в более эстетичной, с точки зрения некоторых, форме:
$$ f\left( x+h \right) — f\left( x \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \left(h_{1} \frac{\partial}{\partial x_{1}} + \cdots + h_{n} \frac{\partial}{\partial x_{n}}\right) ^{k} f \left( x \right) + r_{m}\left(x\right) $$

Замечание  2. Рассмотрим общий вид формулы Тейлора для случая функции двух переменных:
$$  f\left(x + h_1, y + h_2 \right) — f\left( x,y \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \left(h_{1} \frac{\partial}{\partial x} + h_{2} \frac{\partial}{\partial y}\right) ^{k} f \left( x, y \right) + r_{m}\left(x,y\right) $$
$$  f\left(x + h_1, y + h_2 \right) — f\left( x, y \right) = \sum_{k=1}^{m-1} \frac{1}{k!} \sum_{p=0}^{k} C_{k}^{p} \frac{\partial^{k} f}{\partial x^{k-p} \partial y^{p}}\left(x, y \right) h_{1}^{k-p} h_{2}^{p} + r_{m}\left(x,y\right) $$

Замечание  3. Если в качестве точки [latex] x [/latex] взять точку [latex] \left(0, \cdots, 0 \right) [/latex], то формулу Тейлора называют формулой Маклорена.

Замечание  4. Формулу Тейлора можно использовать для приближённого вычисления значений рассматриваемой функции. В частности, если рассматривать разложение до членов первого порядка включительно, то получаем очень простую геометрическую интерпретацию: график функции «приближается» некоторой гиперплоскостью. В случае двух переменных речь идёт об обычной плоскости и описанную ситуацию можно схематично изобразить так:
taylor

Пример

Разложим по формуле Тейлора до членов второго порядка включительно функцию [latex] f \left( x, y \right) = e ^ {-\left(x^2 + y^2 \right)}[/latex] в окрестности точки [latex] \left( 1, 2 \right) [/latex]
Поскольку речь идёт о членах второго порядка, нам понадобятся производные вплоть до того же порядка. Найдём производные и вычислим их значения в точке разложения:
$$ f \left( 1, 2 \right) = e ^ {-5} $$
$$\frac{\partial f}{\partial x}\left(x, y\right) = -2x e ^ {-\left(x^2 + y^2 \right)} ~~~~~~~~ \frac{\partial f}{\partial x}\left(1, 2\right) = -2e ^ {-5}$$
$$\frac{\partial f}{\partial x}\left(x, y\right) = -2y e ^ {-\left(x^2 + y^2 \right)} ~~~~~~~~ \frac{\partial f}{\partial x}\left(1, 2\right) = -4e ^ {-5}$$
$$\frac{\partial ^ 2 f}{\partial x^2}\left(x, y\right) = \left(-2 + 4x^2 \right) e ^ {-\left(x^2 + y^2 \right)} ~~~~~~~~ \frac{\partial ^ 2 f}{\partial x^2}\left(1, 2\right) = 2 e ^ {-5} $$
$$\frac{\partial ^ 2 f}{\partial y^2}\left(x, y\right) = \left(-2 + 4y^2 \right) e ^ {-\left(x^2 + y^2 \right)} ~~~~~~~~ \frac{\partial ^ 2 f}{\partial y^2}\left(1, 2\right) = 14 e ^ {-5} $$

$$\frac{\partial ^ 2 f}{\partial x \partial y}\left(x, y\right) = \frac{\partial ^ 2 f}{\partial y \partial x}\left(x, y\right) = 4xy e ^ {-\left(x^2 + y^2 \right)} ~~~~~ \frac{\partial ^ 2 f}{\partial x \partial y}\left(1, 2\right) = \frac{\partial ^ 2 f}{\partial y \partial x} \left(1, 2\right) = 8e ^ {-5}$$

Искомое разложение:
$$f \left(x, y\right) \approx e ^ {-5} \left(1 — 2\left(x-1\right) — 4\left( y-2\right) + \left(x-1\right)^2 + 7\left(y-2\right)^2 + 8\left(x-1\right)\left(y-2\right) \right) $$

Проверьте, насколько хорошо Вы знаете многомерные ряды Тейлора.

Формула Тейлора с остатком в форме Лагранжа: 2 комментария

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *