Точки перегиба. Примеры.

Пусть функция $latex f(x)$ непрерывна в точке $latex x_{0}$ и имеет в этой точке конечную или бесконечную производную. Тогда, если эта функция при переходе через точку $latex x_{0}$ меняет направление выпуклости, т.е $latex \exists \delta$ такое что на $latex (x_{0}-\delta ;x_{0})$ функция выпукла вверх (вниз), а на $latex (x_{0};x_{0}+\delta )$ функция выпукла вниз (вверх), то точка $latex x_{0}$ — точка перегиба функции $latex f(x)$.

Пример:

Рассмотрим функцию $latex f(x)=x^{3}$, где тогда $latex x=0$, является точкой перегиба данной функции.

Svg.4.ex

 Список литературы:

Формула Тейлора с остатком в форме Пеано

Формулировка:

Если существует $ f^{(n)}(x_{0}) $, то $ f(x) $ представима в следующем виде:

$$ f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}}{k!}(x-x_{0})^{k}+o((x-x_{0})^{n})_{x\to x_{0}} $$

Это выражение $ f(x) $ называется формулой Тейлора с остаточным членом в форме Пеано (или локальной формулой Тейлора)

Доказательство:

Для начала докажем Лемму

Пусть функции $ \varphi(x),\psi(x) $ определены в  $ \delta $  окрестности точки $ x_{0} $ и удовлетворяют следующим условиям:

  1. $ \forall x \in U_{\delta} \exists \varphi^{(n+1)}(x),\psi^{(n+1)}(x); $
  2. $ \varphi(x_{0})=\varphi'(x_{0})=…=\varphi^{(n)}(x_{0})=0 $, $ \psi(x_{0})=\psi'(x_{0})=…=\psi^{(n)}(x_{0})=0 $
  3. $ \psi(x)\neq0,\psi^{k}(x)\neq 0 \forall x\in U_{\delta}(x_{0}),k=\overline{1,n+1} $

Тогда $ \forall x\in U_{\delta}(x_{0}) $ существует точка $ \xi $, принадлежащая интервалу с концами $ x_{0} $ и $ x $ такая, что $ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi^{n+1}(\xi)}{\psi^{n+1}(\xi)} $

Доказательство 

Пусть, например, $ x \in (x_{0},x_{0}+\delta) $. Тогда применяя к функциям $ \varphi $ и $ \psi $ на отрезке $ [x_{0},x] $ теорему Коши и учитывая, что $ \varphi(x)=\psi(x)=0 $ по условию, получаем

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi(x)-\varphi(x_{0})}{\psi(x)-\psi(x_{0})}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}$, $ x_{0}<\xi_{1}<x $$

Аналогично, применяя к функциям $ \varphi’ $ и $ \psi’ $ на отрезке $ [x_{0},\xi_{1}] $ теорему Коши, находим

$$ \frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=\frac{\varphi'(\xi_{1})-\varphi'(x_{0})}{\psi'(\xi_{1})-\psi'(x_{0})}=\frac{\varphi»(\xi_{2})}{\psi»(\xi_{2})},$$ $$ x_{0}<\xi_{2}<\xi_{1} $$

Из этих двух равенств следует, что

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=\frac{\varphi»(\xi_{2})}{\psi»(\xi_{2})},$$ $$ x_{0}<\xi_{2}<\xi_{1}<x<x_{0}+\delta $$

Применяя теорему Коши последовательно к функциям $ \varphi» $ и $ \psi» $,$ \varphi^{(3)} $ и $ \psi^{(3)} $,…,$ \varphi^{(n)} $ и $ \psi^{(n)}$ на соответствующих отрезках получаем

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=…=\frac{\varphi^{n}(\xi_{n})}{\psi^{n}(\xi_{n})}=\frac{\varphi^{n+1}(\xi)}{\psi^{n+1}(\xi)} $$

где $ x_{0}<\xi<\xi_{n}<…<\xi_{2}<\xi_{1}<x<x_{0}+\delta $

Равенство доказано для случая, когда $ x \in(x_{0},x_0+\delta) $, аналогично рассматривается случай, когда $ x \in(x_0-\delta,x_{0}) $.

Теперь, когда лемма доказана, приступим к доказательству самой теоремы:

Из существования $ f^{(n)}(x_{0}) $ следует, что функция $ f(x_{0}) $ определена и имеет производные до $ (n-1) $ порядка включительно в $ \delta $ окрестности точки  $ x_{0} $

Обозначим $ \varphi(x)=r_{n}(x),\psi(x)=(x-x_{0})^{n} $, где  $ r_{n}(x)=f(x)-P_{n}(x) $.

Функции $ \varphi(x) $ и $ \psi(x) $ удовлетворяют условиям леммы, если заменить номер $ n+1 $ на $ n-1 $

Используя ранее доказанную лемму и учитывая, что $ r_{n}^{(n-1)}(x_{0})=0 $ получаем

$$ \frac{r_{n}(x)}{(x-x_{0})^{n}}=\frac{r_{n}^{n-1}(\xi)-r_{n}^{(n-1)}(x_{0})}{n!(\xi-x_{0})}, $$ $$ \xi=\xi(x)(*) $$

где $ x_{0}<\xi<x<x_{0}<x_{0}+\delta $ или $ x_{0}-\delta<x<\xi<x_{0} $.

Пусть $ x\to x_{0} $, тогда из неравенств следует, что $ \xi \to x_{0} $, и в силу существования $ f^{(n)}(x_{0}) $ существует

$$ \lim\limits_{x\to x_{0}}\frac{r_{n}^{(n-1)}(x)-r_{n}^{(n-1)}(x_{0)}}{x-x_0}= $$

$$ =\lim\limits_{x\to x_{0}}\frac{r_{n}^{(n-1)}(\xi)-r_{n}^{(n-1)}(x_{0)}}{\xi-x_{0}}=r_{n}^{(n)}(x_{0})=0 $$

Так как выполняются равенства $ r_{n}(x_{0})=r_{n}'(x_{0})=…=r_{n}^{(n)}(x_{0})=0 $

Таким образом, правая часть формулы $ (*) $ имеет при $ x\to x_{0} $ предел, равный нулю, а поэтому существует предел левой части этой формулы, так же равный нулю. Это означает, что $ r_{n}(x)=o((x-x_{0})^{n}),x\to x_{0} $, то есть $ f(x)-P_{n}(x)=o((x-x_{0})^{n}) $, что и требовалось доказать.

Пример:

Разложить функцию $ y=\cos^{2}(x) $ в окрестности точки $ x_{0}=0 $  по Тейлору с остатком в форме Пеано.

Решение

Табличное разложение косинуса имеет следующий вид:

$$ \cos(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-…+(-1)^{n}\frac{x^{2n}}{(2n)!}+o(x^{2n+1}) $$

Представим функцию $ \cos^{2}(x) $ в виде:

$$ \cos^{2}(x)=\frac{1+\cos(2x)}{2}=\frac{1}{2}+\frac{1}{2}\cos(2x) $$

Заменим в табличном разложении $ x $ на $ 2x $ и подставим представление косинуса.Получим

$$ \cos^{2}(x)=1-x^2+\frac{x^{4}}{3}-…+(-1)^{n} \frac{2^{2n-1}x^{2n}}{2n!}+o(x^{2n+1})$$

Источники:

  1. Конспект по курсу математического анализа Лысенко З.М.
  2. Тер-Крикоровв А.М., Шабунин М.И. Курс математического анализа -М.:ФИЗМАТ-ЛИТ, 2001.-672 с. гл. IV §18 с. 161.

Тест на знание формулы Тейлора(ост.Пеано)

Проверьте себя на знание доказательства и применения формулы Тейлора с остатком в форме Пеано.

Эквивалентные функции и их применение к нахождению пределов

Эквивалентные функции

Определение :
Если [latex]\exists\dot{U}_{\delta }(x_{0})[/latex]в которой определены [latex]f,g[/latex]  и [latex]h:f(x)=g(x)h(x)[/latex],
причём [latex]lim_{x\rightarrow x_{0}}h(x)=1\Rightarrow f[/latex] и [latex]g[/latex]- эквивалентные при [latex]x\rightarrow x_{0}[/latex] и пишут [latex]f_{x\rightarrow x_{0}}\sim g[/latex]
[latex]lim_{x\rightarrow 0}\frac{f(x)}{g(x)}=h(x)=1[/latex]
Понятие эквивалентные обычно используют, когда f и g — бесконечно малые или бесконечно большие при [latex]x\rightarrow x_{0}[/latex]

Критерий:
Для того, чтобы две бесконечно малые  [latex]\alpha[/latex]  и [latex]\beta[/latex] были эквивалентны, необходимо и достаточно, чтобы было [latex]lim\frac{\beta }{\alpha }=1[/latex]
Положив  [latex]\beta-\alpha =\gamma[/latex], будем иметь  [latex]\frac{\beta }{\alpha }-1=\frac{\gamma }{\alpha }[/latex]
Отсюда сразу и вытекает наше утверждение. Действительно, если   [latex]\frac{\beta }{\alpha }\rightarrow 1[/latex] , то [latex]\frac{\gamma }{\alpha }\rightarrow 0[/latex]  , то есть[latex]\gamma[/latex] есть бесконечно малая высшего порядка, чем  [latex]\alpha[/latex] и  [latex]\beta \sim \alpha[/latex] . Обратно, если дано, что [latex]\beta \sim \alpha[/latex] , то [latex]\frac{\gamma }{\alpha }\rightarrow 0[/latex] , а тогда  [latex]\frac{\beta }{\alpha }\rightarrow 1[/latex].
С помощью этого критерия, например, видно, что при [latex]x\rightarrow 0[/latex] бесконечно малая  [latex]sin\: x[/latex]  эквивалентна [latex]x[/latex], а [latex]\sqrt{1+x}-1=\frac{1}{2}x[/latex].
Доказанное свойство эквивалентных бесконечно малых приводит к использованию их при раскрытии неопределённости  [latex]\left [ \frac{0}{0} \right ][/latex] . Т.е. при разыскании предела отношения двух бесконечно малых  [latex]\frac{\beta }{\alpha }[/latex]. Каждая из них при этом может быть заменена, без влияния на предел, любой эквивалентной ей бесконечно малой.

Замена функций эквивалентными при вычислении предела:

Теорема:
Если[latex]f\sim f_{1}[/latex] , а [latex]g\sim g_{1}[/latex] , при [latex]x\rightarrow x_{0}[/latex] , то если [latex]\exists\; lim_{x\rightarrow x_{0}}\frac{f_{1}(x)}{g_{1}(x)}[/latex] , то  [latex]\exists\; lim_{x\rightarrow x_{0}}\frac{f(x)}{g(x)}[/latex] и [latex]lim_{x\rightarrow x_{0}}\frac{f_{1}(x)}{g_{1}(x)}=lim_{x\rightarrow x_{0}}\frac{f(x)}{g(x)}[/latex]
Замечание:
Если в числителе или знаменателе стоит сумма, то  при раскрытии неопределенности заменять отдельные слагаемые эквивалентными величинами нельзя, т.к. такая замена может привести к неверному результату.

Примеры:

1) [latex]lim_{x\rightarrow 0}\frac{arcsinx(e^{x}-1)}{cosx-cos3x}=[/latex][latex]\begin{bmatrix} arcsinx\sim x\\e^{x-1}\sim x \\cosx-cos3x=2sinxsin2x \ \end{bmatrix}[/latex][latex]\Rightarrow lim_{x\rightarrow 0}\frac{x*x}{4x^{2}}=[/latex][latex]\frac{1}{4}[/latex]

2) [latex]lim_{x\rightarrow \infty }x(e^{\frac{1}{x}}-1)=[/latex][latex]\begin{bmatrix} \frac{1}{x}=t\\ x\rightarrow \infty \Rightarrow t\rightarrow 0 \end{bmatrix}[/latex][latex]=lim_{t\rightarrow 0 }\frac{1}{t}(e^{t}-1)=[/latex][latex]lim_{t\rightarrow 0}\frac{1}{t}t=[/latex][latex]lim_{t\rightarrow 0}1=1[/latex]

Источники:

  • Лысенко З.М. Конспект лекций по курсу математического анализа. (Тема «Сравнение функций»).
  • Фихтенгольц Г. М. «Основы математического анализа, том 1» Издание шестое,  стереотипное 1968 Изд-во Наука (с. 112-114)

Тест по теме «Эквивалентные функции»

Вторая теорема Вейерштрасса о достижении верхней и нижней границ

Вторая теорема Вейерштрасса

Если [latex]f\in C[a;b][/latex] , то она достигает своих точных граней, то есть

[latex] \exists \xi \in [a;b]: f(\xi)= \sup\limits_{x \in [a;b]} f(x) [/latex]  и

[latex]\exists \xi _{1}\in [a;b]: f(\xi_{1})= \inf\limits_{x \in [a;b]} f(x)[/latex] .

Доказательство:

[latex]\exists \xi \in [ a;b]: f(\xi)= \sup\limits_{x \in [a;b] } f(x) [/latex]
Обозначим [latex]M=\sup f(x)[/latex] (следует из первой теоремы Вейерштрасса)
В силу определения точной верхней грани выполняется условие: [latex]\forall x\in [a;b]:f(x)\leq M[/latex]
[latex]\forall \varepsilon >0\; \exists x_{\varepsilon }\in [a;b]:M-\varepsilon <f(x_{\varepsilon })[/latex]

Полагая [latex]\varepsilon =1, \frac{1}{2},\frac{1}{3},…,\frac{1}{n},…[/latex] получим последовательность [latex]\left \{ x_{n} \right \}[/latex]такую, что для всех [latex] n\in N [/latex]выполняются условия [latex]\forall n\in \mathbb{N}:M-\frac{1}{n}<f(x_{n})\leq M[/latex] откуда получаем [latex] \lim\limits_{x \to \infty }f(x_{n})[/latex] существует подпоследовательность [latex]\left \{ x_{n_{k}} \right \}[/latex]  (по теореме Больцано-Вейерштрасса) последовательности [latex]\left \{ x_{n} \right \}[/latex]  и точка [latex]\xi[/latex] , такие что [latex] \lim\limits_{x \to \infty } x_{n_{k}}=\xi[/latex] ,  где  [latex]\xi\in [a;b].[/latex]
В силу непрерывности функции [latex]f[/latex] в точке [latex]\xi[/latex] [latex]\lim\limits_{x \to \infty }f(x_{n_{k}})=f(\xi )[/latex]

С другой стороны [latex]\left \{ f(x_{n_{k}}) \right \}[/latex] — подпоследовательность последовательности [latex]\left \{ f(x_{n}) \right \}[/latex], сходящейся к числу [latex]M.[/latex]
Поэтому  [latex]\lim\limits_{x \to \infty }f(x_{n_{k}})=M[/latex]
В силу единственности предела последовательности заключаем, что[latex]f(\xi )=M=\sup\limits_{x \in [a;b]} f(x); [/latex]

Утверждение [latex]\exists \xi \in [ a; b]:f(\xi)= \sup\limits_{x \in [a;b]} f(x)[/latex] доказано.

Аналогично доказывается [latex]\exists \xi _{1}\in [a;b]: f(\xi_{1})=\inf\limits_{x \in [a;b]} f(x) [/latex]
Функция непрерывна на интервале может не достигать своих точных граней (требовать непрерывности на сегменте существенно).

Литература

Тест по теме «Вторая теорема Вейерштрасса»

Задачи, которые приводят к понятию определенного интеграла Римана


Задача 1. (О вычислении пути)


Условие. Предположим, что $latex f(x)$ — скорость движения материальной точки по оси $latex OY$ и $latex f(x)>0$. Необходимо вычислить путь, пройденный материальной точкой за промежуток времени от $latex x=a$ до $latex x=b$.

Решение. Разобьём рассматриваемый промежуток времени от $latex a$ до $latex b$ на малые промежутки  (рис.3)  $$a=x_{0}<x_{1}<x_{2}<…<x_{n-1}<x_{n}=b$$ На указанном промежутке скорость приближенно можно считать равной и постоянной, например, $latex f(x_{k})$. Получаем, что путь, пройденный материальной точкой за время $latex \triangle x_{k}=x_{k}-x_{k-1}$ приближенно равен $latex f(x_{k})\triangle x_{k}$. Следовательно, путь пройденный от $latex a$ до $latex b$ приближенно равен:

$latex {S\approx f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$.                                                (1)

При уменьшении всех промежутков времени мы будем получать более точное значение пути. И так, чтобы получить точное значение пути, перейдём к пределу в формуле (1) :

$latex {S\approx \lim\limits_{\triangle x_{k}\to 0 }f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$.                                       (2)


Задача 2. (О вычислении площади криволинейной трапеции)


В предыдущей задаче мы вычислили путь, пройденный материальной точкой за промежуток времени от $latex x=a$ до $latex x=b$, перейдя к пределу. В математике предел вида (2) называется определённым интегралом(или интегралом Римана) от функции $latex f(x)$  в пределах от $latex a$ до $latex b$ и обозначается: $$\underset{a}{\overset{b}{\int}}f(x)dx$$

Рассмотрим рис.1 рисунок-1   Сумма вида (1) равна сумме  площадей прямоугольников с основаниями $latex \triangle x_{k}$  и высотами $latex f( x_{k})$. Т.е., данная сумма равна площади изображенной на рис.1 ступенчатой фигуры, обозначенной светло- и тёмно-зеленым цветом. При стремлении к нулю длин всех отрезков $latex \triangle x_{k}$ площадь указанной ступенчатой фигуры будет стремиться к площади отмеченной на рисунке ступенчатой фигуры, лежащей под графиком функции $latex y=f(x)$ на отрезке $latex [a;b]$.

Эту криволинейную фигуру часто называют криволинейной трапецией . Аналогично задачи 1, перейдём к пределу:

$latex {S=\lim\limits_{\lambda \to 0 }f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$ , где  $latex \lambda = \max \triangle x_{k}$

и $latex S$ -площадь, отмеченной на рисунке (1) фигуры (криволинейной трапеции).

Вывод: площадь криволинейной трапеции можно вычислить по формуле:

[latex] S=\lim\limits_{\lambda \to 0 } \sum\limits_{n=1}^{k}f(x_{n})\triangle x_{n}[/latex] [latex]=\int_{a}^{b}f(x)dx[/latex]                                                                 (3)

Рассмотрим пример:

Условие. Вычислить площадь $latex S$, заключенную между графиком функции $latex y=\sin x$ на отрезке от $latex 0$ до $latex \pi$ и осью $latex OX$ (рис. 2)

рисунок-3

Решение. По формуле (3) предыдущей задачи получаем: $${S=\underset{0}{\overset{\pi}{\int}}\sin x\ dx}$$

Так как одной из первообразных функции $latex f(x)=\sin x$ является функция $latex \Phi (x)=-\cos x$, то по формуле Ньютона -Лейбница получим: $$ S={{\underset{0}{\overset{\pi}{\int}}\sin x\ dx}=(-\cos \pi)-(-\cos 0) }=2$$


Задача 3. (О вычислении массы линейного стержня по известной плотности)


Пусть задан прямолинейный стержень, который меняется вдоль оси (рис.3). default2
$latex \rho =\rho\ (x)$
Если бы плотность во всех участках стержня была бы одинаковой (однородный стержень), то масса m стержня :
$latex m=\rho (b-a)$, $latex \rho =const$
Но, так как плотность не является постоянной, то разобьем [a,b] на однородные участки (участки с одинаковой плотностью) :
$latex a=x_{o}<x_{1}<x_{2}<…<x_{n-1}<x_{n}=b$
$latex \forall \ \xi _{i}\in \triangle x_{i}$ , где $latex \triangle x_{i}=x_{i}-x_{i-1} $ $latex i=\overline{1,n}$
Масса каждого отрезка : $latex m\approx \rho (\xi _{i})\cdot \triangle x_{i}$ $latex
\Rightarrow$ масса всего стержня равна пределу суммы $latex {m=\lim\limits_{x \to 0}\sum\limits_{i=1}^{n}\rho (\xi _{i})\triangle x_{i}}$

Замечание

В просмотренной задаче речь идёт о рассмотрении пределов сумм вида $latex {\sum\limits_{i=1}^{n}\rho (\xi _{i})\triangle x_{i}}$, которые называются интегральными суммами


 

Список литературы:

  • А.Г. Попов, П.Е. Данко, Т.Я. Кожевникова «Мир и образование» 2005 г. (Издание 6-е. Часть 1)  стр. 243-258
  • Лысенко З.М. Конспект лекций по курсу математического анализа.

Тест (Задачи, которые приводят к понятию определенного интеграла Римана)

  1. Задача о вычислении площади криволинейной трапеции.
  2. Задача о вычислении массы линейного стержня по известной плотности.
  3. Задача о вычислении пути, пройденного материальной точкой.

Таблица лучших: Тест (Задачи, которые приводят к понятию определенного интеграла Римана)

максимум из 8 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных