Следствия: остаток в форме Коши и в форме Лагранжа

Следствие 1.

[latex]\varphi(t)=x-t[/latex];

[latex]\varphi'(t)=-1[/latex];

[latex]r_{n}(x_{0},x)=\frac{0-(x-x_{0})}{-1n!}*f^{(n+1)}(\xi)*(x-\xi)^{n}[/latex]

[latex]r_{n}(x_{0},x)=\frac{1}{n!}f^{(n+1)}(\xi)*(x-\xi)^{n}*(x-x_{0})[/latex] — ф-ла Коши остатка.

Следствие 2.

[latex]\varphi(t)=(x-t)^{(n+1)}[/latex];

[latex]\varphi'(t)=-(n+1)(x-t)^{n}[/latex];

[latex]r_{n}(x_{0},x)=\frac{0-(x-x_{0})^{(n+1)}}{-1(n+1)(x-x_{0})^{n}n!}*f^{(n+1)}(\xi)*(x-\xi)^{n}[/latex];

[latex]r_{n}(x_{0},x)=\frac{(x-x_{0})}{(n+1)n!}*f^{(n+1)}(\xi)*(x-\xi)^{n}[/latex];

[latex]r_{n}(x_{0},x)=\frac{(x-x_{0})^{(n+1)}}{(n+1)!}*f^{(n+1)}(\xi)[/latex] — изящная ф-ла Лагранжа для остатка.

Следствие 3 (ф-ла Тейлора с остатком в изящной ф-ме Лангранжа)

Если [latex]f(t), f'(t),\cdots, f^{(n)}(t) \in C[x_{0},x][/latex] и [latex]\exists f^{(n+1)}(t)[/latex] для [latex]\forall t \in (x_{0},x)[/latex], то имеет место ф-ла Тейлора с остатком в ф-ме Лагранжа:

[latex]f(x)=f(x_{0})+\frac{f'(x_{0})}{1!}(x-x_{0})+\frac{f»(x_{0})}{2!}(x-x_{0})^{2}+\cdots+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}++\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{(n+1)}, \xi \in (x_{0},x)[/latex].

Замечание

[latex]n=0[/latex]: [latex]f(x)=f(x_{0})+\frac{f'(\xi)}{1!}(x-x_{0})[/latex]

[latex]f(x)-f(x_{0})= f'(\xi)(x-x_{0})[/latex] — получили ф-лу конечных приращений Лагранжа.

[latex]r_{n}(x_{0},x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n+1}[/latex].

 

Пример 1.

Доказать:

[latex]x-\frac {x^{3}}{3!}<sin(x)<x- \frac{x^{3}}{3!}+\frac{x^{5}}{5!}[/latex]         [latex]\forall x>0[/latex]

[latex]f(x)=sin(x)[/latex]; [latex]x_{0}=0[/latex];

[latex]n=4[/latex]:
[latex]f(x)=\overbrace{f(0)}^0+ \frac {\overbrace{f'(0)}^1}{1!}x+\frac {\overbrace{f»(\xi)}^0}{2!}x^{2}+\frac {\overbrace{f^{(3)}(0)}^{-1}}{3!}x^{3}+\frac {\overbrace{f^{(4)}(0)}^0}{4!}x^{4}+\underbrace{\frac {f^{(5)}(0)}{5!}x^{3}}[/latex]

[latex]sin(x)= \frac{x}{1!}-\frac{x^{3}}{3!}+sin(x\frac{5}{2}\pi)[/latex];

[latex]sin(x\frac{5}{2}\pi)=sin(x+\frac{\pi}{2})=cos(x)[/latex];

[latex]sin^{(5)}(\xi)=cos(\xi)[/latex];

[latex]sin(x)= \frac{x}{1!}-\frac{x^{3}}{3!}+\frac{cos(\xi)}{5!}x^{5} < x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}[/latex];

[latex]n=2[/latex]:
[latex]f(x)=\overbrace{f(0)}^0+ \frac {\overbrace{f'(0)}^1}{1!}x+\frac {\overbrace{f»(0)}^0}{2!}x^{2}+\frac {f^{(3)}(\xi)}{3!}x^{3}[/latex];

[latex]sin(x)= \frac{x}{1!}-\frac{cos(\xi)}{3!}x^{3} > \frac{x}{1!}-\frac{x^{3}}{3!}[/latex];

[latex]-\frac{cos(\xi)}{3!}x^{3}> \frac{x^{3}}{3!}[/latex];

[latex]\frac{cos(\xi)}{3!}x^{3}\leqslant \frac{x^{3}}{3!} \mid \vdots \frac{x^{3}}{3!}, >0[/latex],

[latex]cos(\xi) \leqslant 1[/latex]

Пример 2.

Доказать: [latex]\mid sin(t)-t\mid\leq \frac{t^{2}}{2}, \forall t \in \mathbb{R}[/latex], [latex]x_{0}=0[/latex];
[latex]n=1[/latex]: [latex]f(0)+\frac{\overbrace{f'(0)}^1}{1!}t+\frac{f»(\xi)}{2!}t^{2}[/latex]

[latex]sin(t)=t-\frac{sin(\xi)}{2!}t^{2}[/latex]
[latex]\mid sin(t)-t\mid=\mid \frac{sin(\xi)}{2!}t^{2}\mid=\frac{1}{2} \mid \overbrace{sin(\xi)}^1\mid t^{2}[/latex]

 

Список литературы:

1. Конспект лекций по математическому анализу (Лысенко З.М.)

2. Г.М.Фихтенгольц, Курс дифференциального и интегрального исчисления, том 1, 1962 год, стр. 246-257.

 

 

Достаточные условия дифференцируемости функции в точке

Оглавление

На предыдущую

На следующую

Теорема про остаток формулы Тейлора

Получим информацию об остатке.

Теорема (об остатке [latex]r_{n}(x)[/latex] ф-лы Тейлора)

[latex]f(t), {f}'(t), {f}»(t),\cdots , f^{(n)}(t)\in C[x_{0},x][/latex] и [latex]\exists f^{(n+1)}(t)[/latex], где [latex]t \in (x_{0},x)[/latex]. Пусть ф-ция [latex]\varphi \in C[x_{0},x][/latex] и [latex]\exists \varphi'(t) \neq 0[/latex]     [latex]\forall t(x_{0},x)[/latex]. Тогда [latex]\exists[/latex] т. [latex]\xi \in (x_{0},x)[/latex] : [latex]r_{n}(x_{0},x)=\frac{\varphi (x) -\varphi (x_{0})}{\varphi ‘(\xi)n!} * \frac{f^{(n+1)}(\xi)}{1!}*(x-\xi)^{n}[/latex]

[latex]\square [/latex]
Введем вспомогательную ф-цию [latex]F(t)=f(x)-P_{n}(t,x)[/latex], т.е. [latex]P_{n}(t,x)=f(t)+\frac{{f}'(t)}{1!}(x-t)+\cdots + \frac{f^{(n)}(t)}{n!}(x-t)^{n}[/latex]

[latex]F(t)=f(x)-\left [ f(t)+\frac{{f}'(t)}{1!}(x-t)+\frac{{f}»(t)}{2!}(x-t)^{2}+ \frac{f^{(3)}(t)}{3!}(x-t)^{3}+ \cdots+\frac{f^{(n)}(t)}{n!}(x-t)^{n} \right ][/latex] =[latex]-\left [ f'(t)+ \frac{f»(t)}{1!}(x-t)’ +\frac{f^{(3)}(t)}{2!}((x-t)^{2})’+ \frac{f^{(4)}(t)}{3!}((x-t)^{3})’ +\cdots+\frac{f^{(n+1)}(t)}{n!}((x-t)^{n})’ \right ][/latex]=[latex]-\left [ f'(t)+ \frac{f»(t)(x-t)+(x-t)’f'(t)}{1!} \right ][/latex]=[latex s=4]-\left [ f'(t)+ \frac{f»(t)}{1!}(x-t) +\frac{f'(t)}{1!}(-1)+ \frac{f^{(3)}(t)}{2!}(x-t)^{2}+\frac {f»(t)}{2!}2(x-t)(-1)+\frac {f^{(4)}(t)}{3!}(x-t)^{3}+3(x-t)^{2}(-1)\frac {f^{(3)}(t)}{3!}+\cdots+\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}+ n(x-t)^{n-1}(-1)\frac {f^{n}(t)}{n!} \right ][/latex]

[latex]F'(t)=-\frac {f^{(n+1)}(t)}{n!}(x-t)^{n}[/latex]
К паре ф-ций F(t) и [latex]\varphi (t)[/latex] на [latex][x_{0},x][/latex] применим теорему Коши о конечных приращениях [latex]\Rightarrow \exists[/latex] т. [latex]\xi \in (x_{0},x)[/latex]: [latex]\frac {f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}[/latex];
[latex]\frac {\overbrace {F(x)}^0-\overbrace{F(x_{0})}^{r_{n}(x_{0},x)}}{\varphi (x) — \varphi (x_{0})}=\frac {F'(\xi)}{\varphi ‘(\xi)}[/latex];

Уточняем!
[latex]F(x)=f(x) — P_{n}(x,x)=0;[/latex]
[latex]F(x_{0})=f(x)-P_{n}(x_{0},x)=r_{n}(x_{0},x)[/latex];
[latex]F'(\xi)=- \frac {f^{(n+1)}(\xi)}{n!}(x-\xi )^{n}[/latex];

Таким образом мы получаем следующую формулу:
[latex]\frac{0-r_{n}(x_{0},x)}{\varphi(x)-\varphi(x_{0})}= -\frac{f^{(n+1)}(\xi)}{n!\varphi(\xi)}(x-\xi)^{n}[/latex]. Отсюда
[latex]r_{n}(x_{0},x)=\frac{\varphi(x)-\varphi(x_{0})}{\varphi'(\xi)n!}*f^{(n+1)}(\xi)*(x-\xi)^{n}[/latex].
[latex]\blacksquare[/latex]

 

 

Список литературы:

1. Конспект лекций по математическому анализу (Лысенко З.М.)

2. Г.М.Фихтенгольц, Курс дифференциального и интегрального исчисления, том 1, 1962 год, стр. 246-257.

Различные типы пределов: бесконечные пределы в конечной точке и на бесконечности

Бесконечные пределы в конечной точке

Проколотой окрестностью точки [latex]a[/latex] называется:

[latex]\dot{U}_{\delta }(a)=(a-\delta ;a)\cup (a;a+\delta ).[/latex]

Пусть функция [latex]f(x)[/latex] определена в некоторой проколотой окрестности точки [latex]a.[/latex] Говорят, что [latex]f(x)[/latex] имеет бесконечный предел в этой точке [latex](\lim\limits_{x\rightarrow a}f(x)= \infty),[/latex] если:

[latex]\forall \varepsilon >0 \: \exists \delta>0 :\forall x\in\dot{U}_{\delta }(a):\: |f(x)|>\varepsilon.[/latex]

В этом случае функцию называют бесконечно большой при [latex]x\rightarrow a.[/latex] Данный общий случай можно разделить на два частных:

[latex]\lim\limits_{x\rightarrow a}f(x)= +\infty\Leftrightarrow \forall \varepsilon >0 \: \exists \delta>0 :\forall x\in\dot{U}_{\delta }(a):\: f(x)>\varepsilon[/latex]

и, соответственно

[latex]\lim\limits_{x\rightarrow a}f(x)= -\infty \Leftrightarrow \forall \varepsilon >0 \: \exists \delta>0 :\forall x\in\dot{U}_{\delta }(a):\: f(x)<-\varepsilon.[/latex]

Пример 1

Дана функция [latex]f(x)=\frac{1}{x}:[/latex]
frac1x
Найти предел при [latex]x\rightarrow 0.[/latex]

Спойлер

Функция определена на всей вещественной оси кроме т. [latex]0[/latex]. Рассмотрим некоторую проколотую окрестность [latex]\dot{U}_{\delta }(0)[/latex]. Как видно, для [latex]\forall \varepsilon \: \exists\, \delta =\frac{1}{\varepsilon }[/latex] такое, что [latex]\forall x\in (0;|\delta |)\: |f(x)|>\varepsilon [/latex]. Отсюда, по определению следует, что эта функция бесконечно большая при [latex]x\rightarrow 0[/latex]. При этом на [latex](-\infty;0 )\: \:\lim\limits_{x\rightarrow 0}=-\infty [/latex], а на [latex](0;+\infty )\: \:\lim\limits_{x\rightarrow 0}=+\infty [/latex].

[свернуть]

Пределы на бесконечности

Число [latex]A[/latex] называют пределом функции [latex]f(x)[/latex] на бесконечности [latex](\lim\limits_{x\rightarrow \infty }f(x)=A),[/latex] если

[latex]\forall \varepsilon >0\: \exists \delta _{\varepsilon }>0:\forall |x|>\delta _{\varepsilon }:\: |f(x)-A|<\varepsilon.[/latex]

Отсюда, очевидно, следуют определения предела на [latex]+\infty:[/latex]

[latex]\lim\limits_{x\rightarrow +\infty }f(x)=A\Leftrightarrow \forall \varepsilon >0\: \exists \delta _{\varepsilon }>0:\forall x >\delta _{\varepsilon }:\: |f(x)-A|<\varepsilon[/latex]

и на [latex]-\infty:[/latex]

[latex]\lim\limits_{x\rightarrow -\infty }f(x)=A\Leftrightarrow \forall \varepsilon >0\: \exists \delta _{\varepsilon }>0:\forall x<-\delta _{\varepsilon }:\: |f(x)-A|<\varepsilon.[/latex]

Абсолютно аналогично определяется бесконечный предел на бесконечности:

[latex]\lim\limits_{x\rightarrow \infty }f(x)=\infty \Leftrightarrow \forall \varepsilon >0\: \exists \delta _{\varepsilon }>0:\forall |x|>\delta _{\varepsilon }:\: |f(x)|>\varepsilon[/latex]
[latex]\lim\limits_{x\rightarrow \infty }f(x)=+ \infty \Leftrightarrow \forall \varepsilon >0\: \exists \delta _{\varepsilon }>0:\forall |x|>\delta _{\varepsilon }:\: f(x)>\varepsilon[/latex]
[latex]\lim\limits_{x\rightarrow \infty }f(x)=- \infty \Leftrightarrow \forall \varepsilon >0\: \exists \delta _{\varepsilon }>0:\forall |x|>\delta _{\varepsilon }:\: f(x)<-\varepsilon[/latex]
[latex]\lim\limits_{x\rightarrow -\infty }f(x)=\infty \Leftrightarrow \forall \varepsilon >0\: \exists \delta _{\varepsilon }>0:\forall x<-\delta _{\varepsilon }:\: |f(x)|>\varepsilon[/latex]
[latex]\lim\limits_{x\rightarrow +\infty }f(x)=\infty \Leftrightarrow \forall \varepsilon >0\: \exists \delta _{\varepsilon }>0:\forall x>\delta _{\varepsilon }:\: |f(x)|>\varepsilon[/latex]

Пример 2

Рассмотрим функцию [latex]f(x)=\ln x^{2}:[/latex]
lnxpow2

Спойлер

При [latex]x\rightarrow \infty [/latex] значение функции монотонно растет. Для любого [latex]\varepsilon [/latex] и соответствующего ему [latex]\delta _{\varepsilon }[/latex] найдется такой [latex]x[/latex], например, [latex]x=\delta _{\varepsilon }+1[/latex], что [latex]f(x)> f(\delta _{\varepsilon })[/latex]. Иначе говоря, [latex]\forall \varepsilon >0\: \exists \delta _{\varepsilon }=\varepsilon:\forall |x|>\delta _{\varepsilon }:\: f(x)>\varepsilon[/latex]. Это значит, что [latex]\lim\limits_{x\rightarrow \infty }f(x)=+\infty [/latex].

[свернуть]

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001 г., стр. 79-80
  2. Демидович Б.П., Сборник задач и упражнений по математическому анализу, физмат-лит, 1966 г., стр. 50

Тест


Таблица лучших: Бесконечные пределы в конечной точке и на бесконечности

максимум из 17 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Обратная функция

Определение

Пусть функция $y=f(x)$ с областью определения $ D(f)$ и множеством значений $R(f)$. Обратная к $f$ — функция $f^{-1}$ определяется как функция с областью определения $D(f^{-1})=R(f)$  и множеством значений $R(f^{-1})=D(f)$ , такая что $f^{-1}(y)=x$ тогда и только тогда, когда $f(x)=y$. Таким образом,  $f^{-1}$ возвращает $y$ обратно в $x$.

График

Переход от функции $y=f(x)$, $x\in X$, к обратной функции $x=f^{-1}(y)$, $y\in Y$ (если она существует), сводится к изменению ролей множеств $X$ и $Y$. Следовательно, графики функций $y=f(x)$ и $x=f^{-1}(y)$ на плоскости $XOY$ совпадают. Но обычно и для обратной функции аргумент обозначают через $x$, т.е. записывают ее в виде $y=f^{-1}(x)$. График функции $y=f^{-1}(x)$ получается из графика функции $y=f(x)$ с помощью преобразования плоскости $XOY$, переводящей каждую точку $(x,y)$ в точку $(y,x)$, то есть симметрией относительно прямой $y=x$.

Graphic

Спойлер

  1. Найти функцию, обратную функции $y=3x+5$.
    Решение:
    Функция $y=3x+5$ определена и возрастает на всей числовой оси. Следовательно, обратная функция существует и возрастает. Разрешая уравнение относительно $x$ получим $x=\frac{y-5}{3}$.
  2. Показать, что функция $y=\frac{k}{x}$, на множестве $X = \{x \mid x > 0\}$, где $(k\neq 0)$ обратна сама себе.
    Решение:
    Функция $y=\frac{k}{x}$ определена и строго монотонна $x > 0$ . Следовательно, обратная функция существует. Область значений функции — в зависимости от $k$: если $k > 0$, то $y >0$; если $k < 0$, то $y <0$. Разрешая уравнение относительно $x$, получим $x = \frac{k}{y}$. Итак $f^{-1}(y)=\frac{k}{y}$, $f^{-1}(x) = \frac{k}{x} = f(x)$.

[свернуть]

Источники

  • Лысенко З.М. Конспект лекций по курсу математического анализа. (Тема «Свойства функций непрерывных на отрезке»).

Литература

Тест по теме «Обратная функция»

Остатки формулы Тейлора



Остаток формулы Тейлора (стандартное обозначение- $latex r_{n} (x_{0},x) $) можно определить, как:
  1. Погрешность, которая возникает при замене функции $latex y=f(x) $ многочленом $latex P_{n}(x_{0},x) .$ Если выполнены условия теоремы о представлении формулы $latex f$ в виде многочлена Тейлора, то для значений $latex x$ из окрестности точки $latex x_{0},$ для которых погрешность $latex r_{n}(x_{0},x) $ достаточно мала, многочлен $latex P_{n}(x_{0},x) $ дает приближенное представление функции.
  2. (На рисунке) Разница значений функции $latex f(x) $ и выражающим её многочленом Тейлора в точке $latex x_{0} :$$latex f(x)-P_{n}(x_{0},x)=r_{n}(x_{0},x) $ (уклонение полинома $latex P_{n} $ от функции $latex f(x) $).

r(x0,x)

Существует 3 основных представления остаточного члена:

  1. В форме Лагранжа: $$ \large r_{n} (x_{0},x)=\frac{f^{(n+1)}(x+\theta(x-x_{0}))}{(n+1)!}(x-x_{0})^{n+1} , \ $$$latex 0< \theta < 1 .$$$\ $$
  2. В форме Коши: $$\large r_{n} (x_{0},x) =\frac{f^{(n+1)}(x_{0}+\theta_{1}(x-x_{0}))}{n!}(1-\theta_{1}(x-x_{0}))^{n}(x-x_{0})^{n+1} , \ $$$latex 0< \theta_{1} < 1 .$$$\ $$
  3. В форме Пеано: $$ \large r_{n} (x_{0},x) =o((x-a)^{n}) , \ $$ при $latex x\rightarrow a .$

Примеры:

  1. Написать разложение функции $latex e^{\sin (x)} $ до $latex x^{3} $ с остатком в форме Пеано.
    Спойлер

    $$ e^{\sin (x)}=1+\sin (x)+\frac{1}{2} \sin ^{2}(x)+\frac{1}{6}\sin ^{3}(x)+o(\sin ^{3}(x)) $$ Ввиду эквивалентности бесконечно малых $latex x $ и $latex \sin (x) $ это все равно, что $latex o(x^{3}) ,$ то есть:
    $latex e^{\sin (x)}=1+\sin (x)+ $$latex \frac{1}{2} \sin ^{2}(x)+ $$latex \frac{1}{6} \sin ^{3}(x)+o(x^{3}) \sin(x)= $$latex x-\frac{1}{6}x^{3}+o(x^{4}) \Rightarrow $$latex e^{sin(x)}=1+(x-\frac{1}{6} x^{3} )+ $$latex \frac{1}{2}x^{2}+\frac{1}{6}x^{3}+o(x^{3}) $
    Член с $latex x^{3} $ аннулируется и, окончательно, имеем: $$ e^{ \sin (x)}=1+x+\frac{1}{2}x^{2}+o(x^{3}) $$ $$\ $$

  2. [свернуть]

  • Вычислить предел, используя формулу Тейлора: $$ \lim\limits_{x\rightarrow 0}\frac{\sqrt{1+2\cdot \mathrm{tg} (x)}-e^x+x^2}{\mathrm{arctg} (x)-\sin (x)} $$
    Спойлер

    Разложим числитель по формуле Тейлора: $$\mathrm{tg} (x)=x+\frac{x^3}{3}+o(x^3),\,\, x\rightarrow 0; \ $$ $$ 2 \cdot \mathrm{tg} (x)=2\cdot x+ \frac {2\cdot x^{3}}{3}+o(x^{3}),\,\, x\rightarrow 0;$$ $$\sqrt {1+t}=(1+t)^{\frac {1}{2}}=1+\frac {1}{2}t-\frac {1}{8}t^2+\frac {1}{16}t^{3}+o(t^{3}),\,\, t\rightarrow 0;$$ Таким образом: $latex \sqrt{1+2\cdot \mathrm{tg} (x)}= $$latex 1+\frac{1}{2}2 \cdot \mathrm{tg} (x)- $$latex \frac{1}{8}(2 \mathrm{tg} (x))^2+$$latex \frac{1}{16}(2 \cdot \mathrm{tg} (x))^3+o(\mathrm{tg} ^{3} (x))= $$latex 1+\mathrm{tg} (x)-\frac{1}{2} \mathrm{tg} ^{2} x+$$latex \frac{1}{2} \mathrm{tg} ^3 (x)+o(\mathrm{tg} ^{3} (x))= $$latex 1+x+\frac{x^3}{3}-\frac{1}{2}x^2+\frac{x^3}{2}+o(x^3)= $$latex 1+x-\frac{1}{2}x^2+\frac{5}{6}x^3+o(x^3) . \ $
    Учитывая, что $latex e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3) ,$ находим, по формуле Тейлора ($latex x_{0}=0$) числитель дроби $latex \sqrt{1+2\cdot \mathrm{tg} (x)}-e^x+x^2= $$latex 1+x-\frac{1}{2}x^2+$$latex \frac{5}{6}x^3-1-x-$$latex \frac{x^2}{2}-$$latex \frac{x^3}{6}+$$latex x^2+o(x^3)= $$latex \frac{2}{3}x^3+o(x^3),\, x\rightarrow 0 .$
    Далее раскладываем знаменатель: $latex \sin x= x-$$latex \frac{x^3}{6}+o(x^3);\ $$latex \arcsin x=x+$$latex \frac{x^3}{6}+o(x^3). $ Отсюда $latex \arcsin(x)- \sin (x) = $$latex \frac {x ^{3}}{3} + o (x ^{3}) $ Таким образом, дробь представляется в виде: $$\frac{\frac{2}{3}x^3+o(x^3)}{\frac{1}{3}x^3+o(x^3)}$$ Следовательно:
    $$\lim\limits_{x\rightarrow 0} \frac {\sqrt {1+2\cdot \mathrm{tg} (x)}-e^{x}+x^{2}}{ \mathrm{arctg} (x)-\sin (x)}=\lim\limits_{x\rightarrow 0} \frac{\frac{2}{3}x^3+o(x^3)}{\frac{1}{3}x^3+o(x^3)} = 2 $$

    [свернуть]
  • Список литературы:

    1. Г.М.Фихтенгольц, Курс дифференциального и интегрального исчисления, том 1, 1962 год, стр. 246-257.
    2. Тер-Крикоров А. М. Шабунин М. И. «Курс математического анализа» 3 издание 2001 года, стр. 158-172
    3. Л. Д. Кудрявцев «Курс математического анализа 1» стр. 339-353
    4. Варятанян Г. М. Математический анализ. Часть 1(3). 2009 с. 44-46

    Формула Тейлора. Виды остаточных членов.


    Таблица лучших: Остатки формулы Тейлора

    максимум из 30 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных