Processing math: 100%

Базис и размерность линейного пространства. Переход к новому базису


Определение 1
Пусть задано линейное пространство X над полем P  (X,P). Это линейное пространство называется конечномерным, если существует такое натуральное число MN, что любая ЛНЗ система векторов пространства содержит не более M векторов, в противном случае оно называется бесконечномерным.

Определение 2
Пусть (X,P) — конечномерное пространство. Базисом пространства X называется ЛНЗ система векторов, через которую линейно выражается каждый вектор этого пространства.

Определение 3
Размерностью конечномерного пространства X называется число векторов любого его базиса. Обозначается как dimX.

Определение 4
e1,e2,,em — старый базис
g1,g2,,gm — новый базис
x=mj=1αjej=mi=1βigi
Тогда:
{g1=α11e1+α12e1++α1me1g2=α11e1+α12e1++α1me1gm=α11e1+α12e1++α1me1 — система, описывающая переход от старого базиса к новому.

Литература:

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1980 — стр.19.
  2. Белозёров Г.С. Конспект лекций.
  3. Курош А.Г. Курс высшей алгебры. М.: Наука, 1968 — стр.60-63.

Конечномерность

Определение 1. Пусть линейное пространство называется конечномерным, если существует такая константа MN, так что любая линейно независимая система (далее ЛНЗ) содержит не более M векторов. В противном случае пространство называется бесконечномерным.

Замечание. Нулевое пространство будем считать конечномерным.

Пример 1. Бесконечномерным пространством является (R[x],R). Рассмотрим систему векторов 1,x,x2,,xn. Это система ЛНЗ, так как из равенства α01+α1x+α2x2++αkxk=0 следует, что α0=α1=α2==αk=0. Так как k произвольно, то не существует ограничения M.

Пример 2. Пусть X — конечномерное пространство. Рассмотрим в нем ЛНЗ систему, содержащую максимальное число векторов: x1,x2,,xm. Дополняя эту систему произвольным векторм y, получаем уже линейно зависимую систему: x1,x2,,xm,y. Тогда вектор y линейно выражается через исходную систему, а именно: y=α1x1+α2x2++αmxm.

Лемма 1. Каждое подпространство конечномерного пространства в свою очередь конечномерно.

Лемма 2. Каждое подпространство есть линейная оболочка некоторой своей системы.

Конечномерность

Тест для проверки знаний по теме «Конечномерность».

Литература

  1. Личный конспект, составленный на основе лекций Белозерова Г.С..
  2. Воеводин В.В. Линейная алгебра М.: Наука, 1980.-400 с. (стр. 44-47)