15.2 Ряды с неотрицательными слагаемыми

Пусть $\left\{ a_n \right\}_{n=1}^{\infty}$–последовательность неотрицательных чисел. Рассмотрим ряд $$\sum_{n=1}^{\infty} a_n \tag{15.3}$$

Теорема. Пусть $a_n \geqslant 0.$ Тогда ряд $\left( 15.3 \right) $ сходится в том и только в том случае, когда последовательность его частичных сумм $S_n$ ограничена сверху.

Так как $a_n \geqslant 0,$ то $S_n = S_{n−1} + a_n \geqslant S_{n−1}$, т. е. последовательность частичных сумм Sn монотонно возрастает. По теореме о пределе монотонной последовательности, сходимость $S_n$ (а значит, и сходимость ряда $\left( 15.3 \right) $) эквивалентна ее ограниченности.

Пример. Обобщенным гармоническим рядом называется ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^s},$ где число $s>0.$ Ранее мы уже установили, что при $s=1$ этот ряд расходится. Если $0<s<1,$ то$$S_n \left( s \right) = 1 +\frac{1}{2^s} + \ldots +\frac{1}{n^s} \geqslant 1 +\frac{1}{2} + \ldots +\frac{1}{n} = S_n,$$ и, в силу расходимости гармонического ряда, последовательность частичных сумм обобщенного гармонического ряда не ограничена сверху, т. е. обобщенный гармонический ряд расходится при $0<s \leqslant 1.$

По-другому расходимость обобщенного гармонического ряда при $0<s \leqslant 1$ можно было бы доказать так:$$S_n \left( s \right) = 1 +\frac{1}{2^s} + \ldots +\frac{1}{n^s}\geqslant n\cdot \frac{1}{n^s} = n ^{1-s} \rightarrow +\infty \ \ \left( n \rightarrow \infty \right),$$ откуда следует, что $S_n \left( s \right) \rightarrow +\infty \ \ \left( n \rightarrow \infty \right), $ т. е. расходимость ряда.

Рассмотрим теперь случай $s>1$ Пусть $n \in N.$ Выберем такое натуральное $m$, что $n<2^m.$ Тогда $$S_n \left( s \right) \leqslant S_{2^m-1} \left( s \right) = 1 + \left( \frac{1}{2^s} + \frac{1}{3^s} \right) + \left( \frac{1}{4^s} + \frac{1}{5^s} +\frac{1}{6^s} + \frac{1}{7^s} \right) + \ldots + $$ $$+ \left( \frac{1}{\left( 2^{m-1} \right)^s} + \frac{1}{\left( 2^{m-1}+1 \right)^s} +\ldots + \frac{1}{\left( 2^{m}-1 \right)^s}\right) \leqslant $$ $$\leqslant 1 + 2 \cdot \frac{1}{2^s} + 4 \cdot \frac{1}{4^s} + \ldots + 2^{m-1} \cdot \frac{1}{\left( 2^{m-1} \right)^s} = $$ $$ = 1 + 2^{1-s} + \left( 2^2 \right) ^{1-s} + \ldots + \left( 2^{m-1} \right) ^{1-s} = $$ $$ = 1 + 2^{1-s} + \left( 2^{1-s}\right)^2 + \ldots + \left( 2^{1-s}\right)^{m-1} = \frac{1 — \left( 2^{1-s} \right)^m}{1 — 2^{1-s}} < \frac{1}{1-2^{1-s}}$$

(условие $s>1$ использовано в последнем неравенстве). Отсюда следует, что при $s>1$ имеем $S_n\left( s \right) \leqslant \frac{1}{1−2^{1−s}}$, т. е. последовательность частичных сумм $\left\{S_n \left( s \right )\right\}$ ограничена сверху и, в силу доказанной теоремы, обобщенный гармонический ряд сходится при $s>1.$

Окончательно имеем: ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^s}$ сходится при $s>1$ и расходится при $0 < s \leqslant 1$. При $s \leqslant 0$ этот ряд, очевидно, расходится, так как не выполнено необходимое условие сходимости.

12.7 Формула Тейлора

В одномерном случае формула Тейлора с остатком в форме Лагранжа содержится в следующей теореме.

Теорема. Пусть функция $\gamma$ на отрезке $\left[\alpha,\beta\right]$ имеет непрерывные производные до порядка $q$ включительно, а на интервале $\left(\alpha,\beta\right)$ существует производная порядка $q+1$. Тогда справедливо равенство $$\begin{equation}\gamma\left(\beta\right) — \gamma\left(\alpha\right) =\end{equation}$$
$$\frac{\gamma \prime\left(\alpha\right)}{1\,!}\cdot(\beta-\alpha) + \frac{\gamma\prime\prime\left(\alpha\right)}{2\,!}\cdot(\beta-\alpha)^{2} + + \frac{\gamma^{(q)}\left(\alpha\right)}{q\,!}\cdot(\beta-\alpha)^{q} + \frac{\gamma^{(q+1)}\left(\xi\right)}{q+1\,!}\cdot(\beta-\alpha)^{q+1},$$
где $\xi$ — некоторая точка из интервала $\left(\alpha;\beta\right)$.

Аналог этой теоремы в многомерном случае может иметь следующий вид.

Теорема. Пусть действительная функция $f$ класса $C^{q+1}$ на открытом множестве $E \subset \mathbb{R}^{n} $ и пусть отрезок $\left[a,a+h\right] \subset E$. Тогда справедливо равенство: $$\begin{equation}f\left(a+h\right)-f\left(a\right)=\end{equation}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(a)h^{i}+\frac{1}{2\,!}\sum_{i,j = 1}^{n}\frac{\partial^{2} f}{\partial x^{i} x^{j}}(a)h^{i}h^{j}+\cdots +$$

$$+\frac{1}{q\,!}\sum_{i_{1},\cdots,i_{q}=1}^{n} \frac{\partial^{q} f}{\partial x^{i_{1}}\cdots\partial x^{i_{q}}}(a)h^{i_1}\cdots h^{i_q}+R_{q},$$

где $$R_{q} = \frac{1}{q+1\,!}\sum_{i_{1},\cdots ,i_{q+1}=1}^{n} \frac{\partial^{q+1} f}{\partial x^{i_{1}}\cdots \partial x^{i_{q+1}}}(a+\theta h)h^{i_1}\cdots h^{i_{q+1}},$$

а $\theta$ — некоторое число из отрезка $\left[0,1\right].$

Положим $\gamma(t) = f\left(a+th\right) \left(0\leqslant t\leqslant1\right).$ Ранее была доказана лемма(12.4 стр.283), согласно которой функция $\gamma$ дифференцируема и её производная

$$
\gamma\prime(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(a+th)h^{i}, \left(0\leqslant t\leqslant1\right).
$$

Снова применяя эту лемму получим

$$
\gamma\prime\prime(t)=\sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(a+th)h^{i}h^{j}.
$$

По индукции получаем

$$\gamma^{p}(t)=\sum_{i,\cdots,i_{p} = 1}^{n} \frac{\partial^{p} f}{\partial x^{i_{1}}\cdots\partial x^{i_{p}}}(a+th)h^{i_{1}}\cdots h^{i_{p}}, \left(0 \leqslant p \leqslant q+1 \right)$$

Применяя теперь формулу Тейлора для функции $\gamma$, находим
$$\gamma(1)-\gamma(0) = \gamma\prime(0)+\frac{1}{2\,!}\gamma\prime\prime(0)+\cdots+\frac{1}{q\,!}\gamma^{(q)}(0)+\frac{1}{(q+1)\,!}\gamma^{(q+1)}(\theta),$$
где $0\leqslant\theta\leqslant 1$ Если воспользуемся найденными выражениями для производных функции $\gamma$ и учтем, что $\gamma(1)-\gamma(0)=f(a+h)-f(a),$ то получим требуемое равенство.

Примеры решения задач

  1. Найти разложение функции по формуле Тейлора второго порядка в окрестности точки $M_{0}(2,1).$ $$f(x,y)=x^{2} \cdot 2^{x-3y},$$ используя найденное разложение, найти приближенное значение функции в точке $M(2,05;0,98).$

    Решение

    Вычислим все необходимое для решения:
    $$f\left(2;1\right)=2^{2}\cdot 2^{2-3}=2;$$
    $$\frac{\partial f}{\partial x}=2x\cdot 2^{x-3y}+x^{2}\cdot 2^{x-3y}\cdot \ln {2}; \frac{\partial f}{\partial y}=-3x^{2}\cdot 2^{x-3y} \cdot \ln {2}$$
    $$\frac{\partial f}{\partial x}(2;1)=2\cdot 2^{2-3}(2+2\ln{2})=2(1+\ln{2});$$ $$ \frac{\partial f}{\partial y}(2;1)=-3\cdot 4 \cdot 2^{2-3} \cdot \ln{2}=-61\ln{2}$$
    $$\frac{\partial^{2} f}{\partial x^{2}}=2^{x-3y}(2+4x\ln{2}+x^{2}\ln^{2}2); $$$$\frac{\partial^{2} f}{\partial x \partial y}= -3x\cdot2^{x-3y}(2+x\ln{2})\ln{2}; \frac{\partial^{2} f}{\partial y^{2}}=9x^{2}-2^{x-3y}\cdot \ln^{2}{2};$$
    $$\frac{\partial^{2} f}{\partial x^{2}}(2;1)=1+4 \ln{2} + 2 \ln^{2}{2}; \frac{\partial^{2} f}{\partial x \partial y}(2;1)=-6(1+\ln{2})\ln{2}; \frac{\partial^{2} f}{\partial y^{2}}(2;1)=18 \ln^{2}{2};$$

    Запишем формулу Тейлора второго порядка для заданной функции:$$f(x;y)\approx 2+\left(2(1+\ln{2})(x-2)-6\ln{2}(y-1)\right)+$$ $$\frac{1}{2}\left[(1+4\ln{2}+2\ln^{2}{2})(x-2)^{2}-12(1+\ln{2})\ln{2}(x-2)(y-1)+18\ln^{2}{2}(y-1)^{2}\right]$$

    Найдём приближенное значение $f(2,05;0,98)\approx 2,087.$

Формула Тейлора для действительных функций

Пройдите этот тест, чтобы проверить свои знания по прочитанной теме.

Список использованной литературы

4.2 Определение и примеры непрерывных функций

Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b)$. Говорят, что функция $f$ непрерывна в точке $x_0$, если
$$\lim_{x \to x_0} f(x) = f (x_0).$$

Замечание. В отличие от определения предела функции $f$ в точке $x_0$, здесь мы требуем, чтобы функция $f$ была определена не только в проколотой окрестности точки $x_0$, а в целой окрестности точки $x_0$. Кроме того, $\displaystyle \lim_{x \to x_0} f(x)$ не просто существует, а равен определенному значению, а именно, $f(x_0)$.

Используя определение предела функции в смысле Коши, определение непрерывности функции $f$ в точке $x_0$ в кванторах можно записать следующим образом:
$$\forall \varepsilon > 0 \space \exists \delta = \delta (\varepsilon) > 0 : \forall x \in (a, b) : |x−x_0| < \delta \Rightarrow \\ \Rightarrow |f(x)−f(x_0)| < \varepsilon.$$
В этом определении можно не требовать выполнения условия $|x−x_0| > 0$, т. к. при $|x−x_0| = 0$ неравенство $|f(x)−f(x_0)| < \varepsilon$, очевидно, выполнено.

Так как величина $\displaystyle \lim_{x \to x_0} f(x)$ зависит лишь от тех значений, которые функция $f$ принимает в сколь угодно малой окрестности точки $x_0$, то непрерывность — это локальное свойство функции.

В терминах окрестностей определение непрерывности выглядит следующим образом.

Определение. Функция $f$ называется непрерывной в точке $x_0$, если для любой окрестности $V$ точки $f(x_0)$ найдется такая окрестность $U$ точки $x_0$, что для всех $x \in U$ значение $f(x) \in V$ , т. е. $f(U \cap (a, b)) \subset V$.

Применяя определение предела функции в смысле Гейне, определение непрерывности можно сформулировать так.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется непрерывной в точке $x_0 \in (a, b)$, если любая последовательность аргументов $\{x_n\} \space (x_n \in (a, b), x_n \to x_0)$ порождает последовательность значений функции $\{f(x_n)\}$, стремящуюся к $f(x_0)$.

Применяя понятие одностороннего предела (т. е. предела слева и справа) в точке $x_0$, можно дать определения непрерывности слева (справа) в точке $x_0$. Именно, функция $f$ называется непрерывной слева (справа) в точке $x_0$, если $\displaystyle \lim_{x \to x_0−0} f(x) = f(x_0) (\lim_{x \to x_0+0} f(x) = f(x_0))$. При этом в определении непрерывности слева достаточно считать, что функция $f$ определена лишь в левой полуокрестности точки $x_0$, т. е. на $(a, x_0]$, а для непрерывности справа — на $[x_0, b)$.

Легко видеть, что справедливо следующее

Утверждение. Для того, чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0$.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется разрывной в точке $x_0 \in (a, b)$, если $f$ не является непрерывной в этой точке.

Итак, функция $f$ является разрывной в точке $x_0$, если выполнено одно из двух следующих условий.

1. Либо не существует $\displaystyle \lim_{x \to x_0} f(x)$.

2. Либо предел $\displaystyle \lim_{x \to x_0} f(x)$ существует, но он не равен $f(x_0)$.

Пример 1. $f(x) \equiv C = Const$. Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$, т. к. для любого $x \in \mathbb{R} \space |f(x)−f(x_0)| = 0$.

Пример 2. $f(x) = x^2, −\infty < x < +\infty, x_0 \in \mathbb{R}$. Зададим $\varepsilon > 0$. Тогда из неравенства
$$|x^2-x_0^2| \leq (|x|+|x_0|)|x-x_0|$$
следует, что при $|x−x_0| < \delta = \min{\Bigr(1, \frac{\varepsilon}{2|x_0|+1}\Bigl)}$ справедливо неравенство $|x^2-x_0^2| < \varepsilon$, т. е. $\displaystyle \lim_{x \to x_0} x^2 = x_0^2$, а значит, функция $f(x) = x^2$ непрерывна в любой точке $x_0 \in \mathbb{R}$.

Пример 3. $f(x) = \sqrt{x}, \space 0 \leq x < +\infty$. Если $x_0 \in (0, +\infty)$, то
$$|\sqrt{x}-\sqrt{x_0}| = \frac{|x-x_0|}{\sqrt{x}+\sqrt{x_0}} \leq \frac{1}{\sqrt{x_0}} |x-x_0| < \varepsilon,$$
если только $|x-x_0| < \delta \equiv \sqrt{x_0} \cdot \varepsilon$. Таким образом, функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 > 0$. В точке $x_0 = 0$ можно ставить вопрос о непрерывности справа. Имеем $|\sqrt{x}-\sqrt{0}| = \sqrt{x} < \varepsilon \space$, если только $0 \leq x < \delta \equiv \varepsilon^2$. Итак, $\displaystyle \lim_{x \to 0+} \sqrt{x} = 0 = \sqrt{0}$, т. е. функция $f(x) = \sqrt{x}$ непрерывна справа в точке $0$.

Пример 4. $f(x)=\sin{x}, -\infty < x < +\infty$. Пусть $x_0 \in \mathbb{R}$. Тогда
$$|\sin{x}−\sin{x_0}| = \Bigg|2\cos{\frac{x+x_0}{2}}\sin{\frac{x-x_0}{2}}\Bigg| \leq \\ \leq 2\Bigg|\sin{\frac{x-x_0}{2}}\Bigg| \leq |x−x_0|,$$
где последнее неравенство в этой цепочке следует из доказанного выше неравенства $|\sin{t}| \leq |t| \space (0 < |t| < \pi/2)$. Можем считать, что $|x−x_0| < \pi$. Тогда при $|x−x_0| < \delta \equiv \min{(\pi, \varepsilon)}$ справедливо $|\sin{x}−\sin{x_0}| < \varepsilon$, т. е. функция $f(x) = \sin{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Аналогично доказываем, что функция $f(x) = \cos{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Пример 5. $f(x) = x \cdot \sin{\frac{1}{x}}$ при $x \neq 0$ и $f(0) = 0$. Покажем, что функция $f$ непрерывна в точке $x_0= 0$. Имеем $f(0) = 0$ и
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin{\frac{1}{x}} = 0$$
(т. к. $|f(x)−0| = |x \sin{\frac{1}{x}}| \leq |x| < \varepsilon$, если только $|x−0| = |x| < \delta \equiv \varepsilon$). Итак, $\displaystyle \lim_{x \to 0} f(x) = f(0)$, так что $f$ непрерывна в точке $0$.

Пример 6. $f(x) = \operatorname{sign} x, x \in R$. Если $x_0 \neq 0$, то функция $f$ постоянна в некоторой окрестности точки $x_0$ и, следовательно, непрерывна в этой точке. Если же $x_0 = 0$, то не существует предела функции $f$ при $x \to 0$. Значит, функция $f$ разрывна в точке $0$. Более того, $\displaystyle \lim_{x \to 0+} \operatorname{sign} x = 1, \lim_{x \to 0−} \operatorname{sign} x = −1, \operatorname{sign} 0 = 0$, так что функция $\operatorname{sign} x$ разрывна в точке $0$ как слева, так и справа.

Пример 7. Рассмотрим функцию Дирихле
$$\begin{equation*}D(x) = \begin{cases} 1, \quad x \in \mathbb{Q}, \\ 0, \quad x \in \mathbb{R \setminus Q}. \end{cases} \end{equation*}$$
Пусть $x_0 \in \mathbb{R}$. Покажем, что не существует предела функции $D$ при $x \to x_0$. Для этого выберем последовательность $\{x^\prime_n\}$ отличных от $x_0$ рациональных чисел, стремящуюся к $x_0$. Тогда $D(x^\prime_n) = 1$ и, значит, $\displaystyle \lim_{n \to \infty} D(x^\prime_n) = 1$. Если же взять последовательность $\{x^{\prime\prime}_n\}$, отличных от $x_0$ иррациональных чисел, стремящуюся к $x_0$, то получим, что $D(x^{\prime\prime}_n) = 0$ и $\displaystyle \lim_{n \to \infty} D(x^{\prime\prime}_n) = 0$. В силу определения предела функции по Гейне получаем, что функция $D$ не имеет предела в точке $x_0$. Так как $x_0 \in \mathbb{R}$ — произвольная точка, то это означает, что функция Дирихле разрывна в каждой точке.

Пример 8. $f(x) = x \cdot D(x), \space x \in \mathbb{R}$. Функция $f$ разрывна в каждой точке $x_0 \neq 0$. В самом деле, если $\{x^\prime_n\}$ и $\{x^{\prime\prime}_n\}$ соответственно последовательности рациональных и иррациональных отличных от $x_0$ чисел, стремящиеся к $x_0$, то $\displaystyle \lim_{n \to \infty} f(x^\prime_n) = 0$ и $\displaystyle \lim_{n \to \infty} f(x^{\prime\prime}_n) = 0$, так что, в силу определения предела функции по Гейне, функция $f$ не имеет предела в точке $x_0$. Если же $x_0 = 0$, то $\displaystyle \lim_{x \to 0} f(x) = 0 = f(0)$. Действительно, $|f(x)| = |x \cdot D(x)| \leq |x| < \varepsilon$, если только $|x−0| = |x| < \delta \equiv \varepsilon$. Это означает, что данная функция непрерывна в единственной точке $x_0 = 0$.

Примеры решения задач

Пусть функция $f$ определена в окрестности точки $x_0$, кроме самой точки $x_0$. Доопределить функцию $f$, задав $f(x_0)$ так, чтобы получившаяся функция была непрерывна в точке $x_0$, если:

  1. $\displaystyle f(x) = \frac{x^2-1}{x+1}, \space x_0 = -1$.

    Решение

    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(x-1)(x+1)}{x+1} = \lim_{x \to -1} (x-1) = -2$$
    Таким образом, положим $\displaystyle f(-1) = \lim_{x \to -1} f(x) = -2$. Значит, функция непрерывна в точке $x_0 = -1$.

  2. $\displaystyle f(x) = \frac{\sqrt{1+x}-1}{x}, \space x_0 = 0$.

    Решение

    Воспользовавшись таблицей эквивалентных, получим:
    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(1+x)^{\frac{1}{2}}-1}{x} \backsim \lim_{x \to 0} \frac{\frac{1}{2}x}{x} = \frac{1}{2}$$
    Таким образом, положим $\displaystyle f(0) = \lim_{x \to 0} f(x) = \frac{1}{2}$. Значит, функция непрерывна в точке $x_0 = 0$.

  3. $\displaystyle f(x) = x\cot{x}, \space x_0 = 0$.

    Решение

    Воспользовавшись таблицей эквивалентных, получим:
    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x\frac{\cos{x}}{\sin{x}} \backsim \lim_{x \to 0} x\frac{\cos{x}}{x} = 1$$
    Таким образом, положим $\displaystyle f(0) = \lim_{x \to 0} f(x) = 1$. Значит, функция непрерывна в точке $x_0 = 0$.

Непрерывные функции

Проверьте, насколько хорошо вы усвоили эту тему и закрепите свои знания по ней, пройдя тест.

1.3 Ограниченные множества

Пусть $E$ – непустое множество действительных чисел.

Определение. Множество $E$ называется ограниченным сверху, если существует такое $M \in \mathbb{R},$ что для всех $x \in E$ справедливо неравенство $x \leqslant M.$ Число $M$ называется верхней границей множества $E.$
Множество $E$ называется ограниченным снизу, если существует такое $m \in \mathbb{R},$ что для всех $x \in E$ справедливо неравенство $x \geqslant m$. Число $m$ называется нижней границей множества $E.$

У ограниченного сверху множества существует сколь угодно много верхних границ. Действительно, если $M$ – верхняя граница множества $M$, то для любого положительного $\xi$ число $M + \xi $ также является верхней границей $E$. Аналогично, у ограниченного снизу множества существует сколь угодно много нижних границ.
С геометрической точки зрения ограниченность сверху множества $E$ означает наличие на числовой прямой такой точки $M,$ что все точки множества $E$ расположены не правее $M.$ Аналогично, ограниченность снизу множества $E$ означает наличие на числовой прямой такой точки $m,$ что все точки множества $E$ расположены не левее, чем $m.$

Определение. Множество $E$ называется ограниченным, если оно ограничено сверху и снизу, т. е. если существуют такие $m, M \in \mathbb{R} ,$ что для всех $x \in E$ справедливо неравенство $m \leqslant x \leqslant M$.

С геометрической точки зрения ограниченность $E$ означает, что все точки множества $E$ содержатся в некотором отрезке $\left [m, M \right ]$ числовой прямой.

Определение. Элемент $x \in E$ называется наибольшим элементом множества $E,$ если для любого $z \in E$ справедливо неравенство $z \leqslant x.$ Элемент $y \in E$ называется наименьшим элементом множества $E,$ если для любого $z \in E$ справедливо неравенство $z \geqslant y.$

Очевидно, что если во множестве $E$ существует наибольший элемент, то это множество ограничено сверху, а если в $E$ существует наименьший элемент, то это множество ограничено снизу. Однако не каждое ограниченное сверху (снизу) множество имеет наибольший (наименьший) элемент. Например, множество $E = \left (0, 1 \right ) \equiv \left \{ x \in \mathbb{R} : 0 < x < 1 \right \}$ ограничено сверху (например, числом $1$), однако в нем нет наибольшего элемента. Действительно, для любого $x \in E$ число $\displaystyle z = \frac{x+1}{2} > x$ также принадлежит $E$. Аналогично можно показать, что $E$ ограничено снизу, но не имеет наименьшего элемента.

Пусть $E$ – ограниченное сверху множество. Через $\overline{E}$ обозначим совокупность всех верхних границ множества $E.$ Множество $\overline{E}$ непусто и, как мы уже видели, неограничено сверху. Очевидно, однако, что $\overline{E}$ ограничено снизу (например, любой элемент множества $E$ является нижней границей множества $\overline{E}).$

Поставим следующий вопрос: существует ли во множестве $\overline{E}$ наименьший элемент?

Определение. Пусть множество $E$ ограничено сверху. Тогда наименьшая из всех его верхних границ называется верхней гранью, или точной верхней границей, и обозначается $\sup E$.

Это определение равносильно следующему.

Определение. Число $M$ называется верхней гранью множества $E,$ если выполнены следующие два условия:

  1. для каждого $x \in E$ справедливо неравенство $x \leqslant M$;
  2. для любого $\xi > 0$ найдется такой $x \in E$, что $x > M − \xi$.

Первое условие этого определения означает, что $M$ является верхней границей множества $E,$ а второе – что $M$ – наименьшая из всех верхних границ, т. е. что никакое число $M − \xi < M$ не является верхней границей множества $E.$
Аналогично формулируется определение нижней грани.

Определение.Пусть множество $E$ ограничено снизу. Тогда наибольшая из всех его нижних границ называется нижней гранью, или точной нижней границей, и обозначается $\inf E$.

Это определение равносильно следующему.

Определение.Число $m$ называется нижней гранью множества $E,$ если выполнены следующие два условия:

  1. для каждого $x \in E$ справедливо неравенство $x \geqslant M$;
  2. для любого $\xi > 0$ найдется такой $x \in E$, что $x < M − \xi$.

Первое условие этого определения означает, что m является нижней границей множества $E,$ а второе – что $m$ – наибольшая из всех нижних границ, т. е. что никакое число $m + \xi > m$ не является нижней границей множества $E.$

Из определения верхней и нижней граней множества не следует сам факт их существования. Существование точных границ устанавливает следующая теорема.

Теорема (о существовании верхней грани).Каждое непустое ограниченное сверху множество имеет верхнюю грань.

Пусть $E$ – ограниченное сверху множество, а $E –$ множество всех его верхних границ. Оба множества непустые, и для любых $x \in E, y \in E$ справедливо неравенство $x \leqslant y.$ По аксиоме полноты множества действительных чисел, существует такое число $M,$ что для любых $x \in E, y \in E$ справедливо неравенство $x \leqslant M \leqslant y.$ Левое неравенство означает, что число M является верхней границей множества $E,$ т. е. $M \in E,$ а правое неравенство показывает, что $M –$ наименьший элемент во множестве $E.$

Аналогично доказывается следующая.

Теорема (о существовании нижней грани).Каждое непустоеограниченное снизу множество имеет нижнюю грань.

Понятие верхней (нижней) грани мы определили для ограниченного сверху (снизу) множества. Но не каждое множество ограничено сверху (снизу). Так, само множество действительных чисел $\mathbb{R}$ неограничено сверху и снизу. В самом деле, для любого $M \in \mathbb{R}$ найдется $x \in \mathbb{R},$ такой, что $x > M$ (например, $x = M + 1).$ Это означает, что никакое число $M$ не является верхней границей множества $\mathbb{R}.$ В случае если множество $E$ неограничено сверху, иногда пишут $\sup E = +\infty.$ Аналогично, если множество $E$ неограничено снизу, то пишут $\inf E = −\infty.$ Примером неограниченного снизу множества также может быть множество $\mathbb{R}.$

Примеры решения задач

  1. Пусть $\displaystyle X = \left \{ 1, \frac{1}{2}, \frac{1}{3}, \ldots \frac{1}{n}, \ldots \right \}.$
    1. Указать наименьший и наибольший элементы этого множества, если они существуют.
    2. Каковы множества верхних и нижних границ для множества $X.$ Найти $\sup X$ и $\inf X.$
    Решение
    1. Данное множество имеет наибольший элемент $M=1$ поскольку для всех элементов множества $x \in X$ выполняется неравенство $x \leqslant 1$ и при этом $1 \in X.$ Наименьшего элемента заданное множество не имеет, так как для любого элемента $\displaystyle x_n= \frac{1}{n}\in X$ всегда найдется элемент $\displaystyle x_{n+1}=\frac{1}{n+1} \in X$ для которого выполняется неравенство $x_{n+1} \leqslant x_n.$

      Наименьшего элемента множества $X$ не существует. Очевидно, что для всех элементов $x$ множества $X$ выполняется $x \geqslant 0,$ то есть множество $X$ ограничено снизу. Покажем, что $0$ является предельным значением множества $X.$ Действительно, для любого $\xi >0$ можно найти натуральное число:
      $$\displaystyle n > \frac{1}{\xi} \Rightarrow \frac{1}{n} < \xi, \frac{1}{n} \in X. $$

    2. Поскольку для всех элементов $x$ множества $X$ выполняется неравенство $x \leqslant 1,$ причем $1 \in X,$ то множество верхних границ для множества $X$ это множество $[1,+\infty)$ c наименьшим элементом равным $1.$ Таким образом, $\sup X=1.$ Множество нижних границ для $X$ это множество $(−\infty,0]$ c наибольшим элементом равным $0.$ Отсюда находим $\inf X=0.$

    Ответ: $M=1,$ наименьшего элемента не существует, $[1,+\infty), (−\infty,0], \sup X=1, \inf X=0.$

  2. Доказать, что для любого непустого ограниченного множества $A \subset \mathbb{R}$ и для любого числа $\lambda \geqslant 0$ справедливо равенство $\sup \lambda A = \lambda \sup A.$ (здесь $\lambda A = {\lambda x : x \in A}$).
    Решение

    Если $\lambda = 0,$ утверждение очевидно. Будем считать, что $\lambda \neq 0$. Обозначим $a = \sup A.$ Требуется доказать, что $\lambda a$ — точная верхняя граница множества $\lambda A.$ Как указано выше, для этого надо проверить, что $\lambda a$ — верхняя граница и что сдвиг вниз на произвольное $\xi > 0$ уже не будет верхней границей. Проверка. Так как $a = \sup A,$ число $a$ — верхняя граница множества $A,$ стало быть, $(\forall x \in A) x \leqslant a.$ Умножив неравенство на положительное число, получаем, что $(\forall x \in A) \lambda x \leqslant\lambda a,$ так что $\lambda a —$ верхняя граница.

    Проверим второе свойство. Пусть дано произвольное $\xi > 0.$ Надо подобрать такое $x \in A,$ что $\lambda x > \lambda a − \xi.$ Запишем последнее неравенство,изолировав в нем $\displaystyle x: x > a − \frac{\xi}{\lambda},$ и вновь воспользуемся условием, согласно которому для любого $\xi_1 > 0$ найдется такое $x \in A,$ что $x > a − \xi_1.$ Взяв в качестве $\xi_1$ число $\displaystyle \frac{\xi}{\lambda},$ получаем, что для любого $\xi > 0$ есть такое $x in A,$что $\displaystyle x > a − \frac{\xi}{\lambda},$ это и требовалось.

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — с. 15-23.
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.22-28.

Ограниченные множества

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Ограниченные множества».

5.6 Правила Лопиталя

Правила Лопиталя
Рассмотрим некоторые теоремы, позволяющие   раскрывать неопределенности  вида $\left [ \displaystyle\frac{0}{0} \right ]$ и $\left [ \displaystyle\frac{\infty }{\infty } \right]$ при нахождении пределов  $\lim\limits_{x\rightarrow a } \displaystyle\frac{f(x)}{g(x)}$, где $f$ и $g$–дифференцируемые функции. Рассмотрим сначала простой случай. Пусть функции $f$ и $g$ дифференцируемые в точке $a$, $f(a) = g(a) = 0$ и ${g}'(a)\neq 0$. Тогда $f(x)={f}'(a)(x-a)+\bar{o}(x-a)$ и $g(x)={g}'(a)(x-a)+\bar{o}(x-a)$, откуда получаем $$\large \lim\limits_{x\rightarrow a } \displaystyle\frac{f(x)}{g(x)}=\lim\limits_{x\rightarrow a }\displaystyle\frac{{f}'(a)(x-a)+\bar{o}(x-a)}{{g}'(a)(x-a)+\bar{o}(x-a)}=\\=\lim\limits_{x\rightarrow a}x \displaystyle\frac{{f}'(a) + \displaystyle\frac{\bar{0}(x-a)}{x-a }}{{g}'(a) + \displaystyle\frac{\bar{0}(x-a)}{x-a }}= \displaystyle\frac{{f}'(a)}{{g}'(a)}$$
Это означает, что (при выполнении соответствующих условий) предел отношения функций равен отношению их производных.

Перейдя по этим ссылкам, Вы найдете подробную информацию о Первой и Второй теореме Лопиталя :

  1. Первая теорема Лопиталя
  2. Вторая теорема Лопиталя
  3. Литература