12.8.1 Квадратичные формы

Определение. Квадратичной формой на $\mathbb{R}^{n}$ называется каждая функция вида
$$Q\left(h\right) = \sum_{i,j=1}^{n} a_{ij}h^{i}h^{j}, $$
где $a_{ij}$ — действительные числа. Матрица $\left(a_{ij}\right)$ называется матрицей квадратичной формы.

Будем считать, что $a_{ij}=a_{ji},$ т. е. что матрица $\left(a_{ij}\right)$ симметрична. Заметим, что $Q$ — это многочлен второго порядка от $n$ переменных $h_{1},\cdots ,h_{n}.$ Ясно, что для любого действительного числа $t$
$$Q\left(th\right) = t^{2}Q\left(h\right). $$

Это свойство называется свойством однородности второго порядка.

Определение Квадратичная форма $Q$ называется положительно определенной, если для любого $h \neq 0$ справедливо неравенство $Q\left(h\right) \gt 0.$

Аналогично, если для любого $h \neq 0$ имеем $Q\left(h\right)\lt 0,$ то такая квадратичная форма называется отрицательно определенной.

Если квадратичная форма принимает как положительные, так и отрицательные значения, то такая квадратичная форма называется неопределенной.

Если $Q\left(h\right)\geqslant 0$ для всех $h,$ то форма называется положительно полуопределенной, а если $Q\left(h\right)\leqslant 0$ для всех $h,$ то форма называется отрицательно полуопределенной.

Квадратичная форма называется знакоопределенной, если она положительно определенная или отрицательно определенная.

Пример 1. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} + 2(x^{2})^{2},$ то для всех $x^{1},x^{2}$ кроме $x^{1}=x^{2}=0$, имеем $Q\left(x^{1},x^{2}\right) \gt 0,$ т.е. эта форма положительно определенная.
Пример 2. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} — x^{1}x^{2} — (x^{2})^{2}$ имеем $Q(1,0)=1, Q(0,1)= -1, $ так что эта форма неопределенная.
Пример 3. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} — 2x^{1}x^{2} + (x^{2})^{2}$ положительно полуопределенная, поскольку для любых $x^{1},x^{2}$ имеем $Q\left(x^{1},x^{2}\right) \geqslant 0,$ но равенство $Q\left(x^{1},x^{2}\right) = 0$ имеет место не только в точке $x^{1}=x^{2}=0,$ а в каждой точке вида $x^{1}=x^{2}$.
Пример 4. Форма $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{n})^{2} = |h|^{2},$ очевидно, положительно определенная.
Пример 5. Пусть $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{m})^{2},$ где $m \lt n$. Эта форма положительно полуопределенная, поскольку $Q(h) \geqslant 0 $, но при $i\gt m$ значений этой формы на стандартном векторе $e_{i}$ равно нулю.
Пример 6. Пусть $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{m})^{2} — (h^{m+1})^{2} — \cdots — (h^{n})^{2},$ где $m \lt n$. Тогда эта форма неопределенная, поскольку $Q(e_{i})=1$ при $i\leqslant m$ и $Q(e_{i})=-1,$ если $i\gt m.$

Для любой квадратичной формы $Q$ $$|Q(h)| \leqslant \sum_{i,j=1}^{n} |a_{i j}| |h^{i}| |h^{j}| \leqslant | h^{2} | \sum_{i,j=1}^{n} |a_{i j}| \equiv K | h^{2} |.$$

Эта оценка показывает, что при $h \rightarrow 0$ квадратичная форма стремится к нулю. Если квадратичная форма знакоопределенная, то полученный порядок стремления к нулю оказывается точным. Именно, справедлива

Лемма 1. Пусть $Q$ — положительно определенная квадратичная форма на $\mathbb{R}^{n}$. Тогда существует такое положительное число $\lambda ,$ что $$Q(h) \geqslant \lambda |h|^{2} (h \subset \mathbb{R}^{n}). $$
Обозначим через $S$ единичную сферу в $\mathbb{R}^{n},$ т.е. $$ S=\left\{x \in \mathbb{R}^{n} : |x|=1\right\}.$$Легко видеть, что $S$ — замкнутое и ограниченное множество и, следовательно, компактное. Поэтому, по второй теореме Вейерштрасса, непрерывная функция $Q$ достигает своего наименьшего значения, которое мы обозначим через $\lambda.$ Но на $S$ форма $Q$ принимает положительные значения, так что $\lambda \gt 0.$
Итак, $Q(x)\geqslant \lambda (|x|=1).$ Если теперь $h$ — произвольный вектор из $\mathbb{R}^{n},$ то положим $ x = \frac{h}{|h|}.$ Тогда $|x|=1,$ т.е. $x$ лежит на единичной сфере, а поэтому $Q(x)\geqslant \lambda .$ Если вместо $x$ подставим его значение, то получим $Q(\frac{h}{|h|})\geqslant \lambda .$ Воспользовавшись свойством однородности второго порядка для формы $Q$, имеем $Q(h)\geqslant \lambda|h|^{2}.$

Теперь займемся таким вопросом. Как по матрице коэффициентов квадратичной формы судить о знакоопределенности формы? Рассмотрим подробно случай $n=2.$

Пусть $Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ Предположим сначала, что $a_{11}\neq 0.$ Тогда $$Q(h,k)=\frac{1}{a_{11}}(a_{11}^{2} h^{2}+2a_{11}a_{12}hk+a_{11}a_{22}k^{2}) = \frac{1}{a_{11}}\left[(a_{11}h+a_{12}k)^{2}+\triangle k^{2} \right],$$ где
$$\triangle = a_{11}a_{22}-a_{12}^{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}.$$

  1. Если $\triangle \gt 0,$ то выражение в квадратных скобках положительно для любых $h$ и $k,$ не равных одновременно нулю, т.е. $Q(h,k)\neq 0,$ причём $sign (Q(h,k)) = sign (a_{11}).$ В этом случае форма является знакоопределенной, она сохраняет свой знак.
  2. Рассмотрим случай $\triangle \lt 0.$ Пусть, например, $k\neq 0.$ Тогда вынося за скобки $k^{2}$ и обозначая $t=\frac{h}{k},$ получаем $$ Q(h,k) = k^{2}\left[a_{11}t^{2}+2a_{12}t+a_{22} \right].$$ Если $a_{11}\neq 0,$ то в скобках имеем квадратный трёхчлен относительно $t.$ Его дискриминант $-4\triangle \gt 0.$ Поэтому этот квадратный трёхчлен имеет различные действительные корни, а значит принимает, как и положительные, так и отрицательные значения.

    Если же $a_{11}=0,$ то $a_{12}\neq 0$(так как иначе бы получили, что $\triangle = 0$). Значит, в квадратных скобках линейный двучлен $2a_{12}t+a_{22},$ который также принимает как положительные, так и отрицательные значения.

    Итак, если $\triangle \lt 0,$ то квадратичная форма $Q$ является неопределенной.

  3. Пусть $\triangle = 0.$ Если $a_{11}\neq 0,$ то получим $$Q(h,k) = \frac{1}{a_{11}}(a_{11}h+a_{12}k)^{2}.$$ Если, например, $a_{11} \gt 0,$ то всегда $Q(h,k) \geqslant 0,$ а при $h = -\frac{a_{12}k}{a_{11}}$ имеем $Q(h,k)=0.$ Это означает, что существуют ненулевые векторы, на которых форма обращается в нуль, и получаем, что форма полуопределена.

    Если же $a_{11}=0,$ то в этом случае $\triangle = -a_{12}^{2}.$ Значит $a_{12}=0$ и $Q(h,k) = a_{22}k^{2}.$ Это — тоже полуопределенная форма.

Итак, если $\triangle = 0,$ то форма полуопределенная.

Окончательно приходим к следующему выводу.

Лемма 2. Пусть

$Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ и $\triangle = a_{11}a_{22}-a_{12}^{2} $

Тогда:

1) если $\triangle \gt 0$, то форма $Q$ — знакоопределенная, причём $sign (Q) = sign (a_{11});$

2) если $\triangle \lt 0 ,$ то $Q$ — неопределенная форма.

2) если $\triangle = 0 ,$ то $Q$ — полуопределенная форма.

Определение. Пусть $Q(h)=\sum_{i,j=1}^{n}a_{ij}h^{i}h^{j}$ — квадратичная форма на $\mathbb{R}^{n}$ с симметричной матрицей $$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

Миноры этой матрицы, расположенные в её левом верхнем углу, называют главными минорами, т.е. главные миноры — это $$
\triangle_{1} = a_{11}, \triangle_{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}, \cdots , \triangle_{n} =\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \ \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}.
$$

Критерий Сильвестра. Для того, чтобы квадратичная форма $Q$ была положительно определенной, необходимо и достаточно, чтобы все её главные миноры были положительными.

Критерий отрицательной определенности. Для того, чтобы квадратичная форма $Q$ была отрицательно определенной, необходимо и достаточно, чтобы были выполнены следующие условия: $-\triangle_{1} \gt 0,\triangle_{2} \gt 0,\cdots ,(-1)^{n}\triangle_{n} \gt 0,$ т.е. главные миноры должны иметь чередующиеся знаки, причём первый должен быть отрицательным.

Эти два критерия здесь мы доказывать не будем.

Примеры решения задач

  1. Найти матрицу квадратичной формы $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 4x_{1}x_{2} + x_{2}^{2} + 2x_{1}x_{3} — x_{3}^{2}$$
    Решение
    1. Запишем квадратичную форму в виде $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 2x_{1}x_{2} — 2x_{2}x_{1} + x_{2}^{2} + x_{1}x_{3} + x_{3}x_{1} — x_{3}^{2}.$$
    2. Здесь $a_{11}=2,a_{12}=-2,a_{13}=1,a_{21}=-2,a_{22}=1,a_{23}=0,a_{31}=1,a_{32}=0,a_{33}=-1,$ следовательно, матрица этой квадратичной формы есть $$\begin{pmatrix} 2 & -2 &1 \\ -2 & 1 & 0 \\ 1 & 0 & -1\\ \end{pmatrix}.$$
  2. Установить характер знакоопределенности квадратичной формы $$Q(x_{1},x_{2},x_{3})=4x_{1}^{2}+6x_{2}^{2}+2x_{3}^{2}+6x_{1}x_{2}$$

    Решение
    1. Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{pmatrix}.$$
    2. Теперь проверим знакоопределенность формы по критерию Сильвестра $$
      \triangle_{1} = 4 \gt 0, \triangle_{2} = \begin{vmatrix}4 & 3 \\3 & 6 \end{vmatrix} = 15 \gt 0, \triangle_{3} =\begin{vmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{vmatrix} = 2\cdot15 = 30 \gt 0,$$ значит, квадратичная форма положительно определенная.
  3. Найти все значения $\lambda,$ при которых положительно определена квадратичная форма $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} + \lambda x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} + 4x_{1}x_{3}. $$

    Решение
    1. Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{pmatrix}.$$
    2. Найдём главные миноры: $$
      \triangle_{1} = 2 , \triangle_{2} = \begin{vmatrix}2 & 2 \\2 & \lambda \end{vmatrix} = 2\lambda — 4 , \triangle_{3} =\begin{vmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{vmatrix} = 6\lambda — 20.$$

    3. По критерию Сильвестра, $Q$ положительно определена тогда и только тогда, когда $$\begin{cases}2\lambda -4 \gt 0, \\6\lambda — 20 \gt 0\end{cases}\Leftrightarrow \lambda \gt \frac{10}{3}.$$

Проверка знаний по пройденной теме

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список использованной литературы

2.1 Определение и элементарные свойства предела последовательности

Последовательность – это функция натурального аргумента. Если каждому натуральному числу $n$ поставлено в соответствие действительное число $\{x_n\}.$ Иначе последовательность обозначают так: $x_1, x_2,…, x_n,….$ Число $x_n$ называется $n-$м элементом (или $n-$м членом) последовательности. Элементы последовательности считаются различными, даже если они равные, но имеют разные номера. Например, последовательность $1, 1, …,$ у которой все $x_n = 1$. Последовательность может быть задана формулой, которая по заданному $n$ позволяет вычислить значение $x_n,$ например, $\frac{(-1)^n + 1}{2}.$ Можно задавать последовательность рекуррентно, т. е. указывать закон, по которому каждый следующий элемент вычисляется по известным предыдущим, например, арифметическая $x_{n+1} = x_n + d,$ или геометрическая $x_{n+1} = x_n \cdot q$ прогрессии (при этом нужно определить один или несколько первых элементов). Можно задавать последовательность описанием её элементов, например, $x_n$ – $n$-й десятичный знак после запятой у числа $\pi.$

Определение. Число $a$ называется пределом последовательности $\{x_n\},$ если для любого $\varepsilon > 0$ найдётся номер $N,$ зависящий, вообще говоря, от $\varepsilon,$ такой, что для всех номеров $n \ge N$ выполняется неравенство $\left |x_n-a\right | < \varepsilon.$ В этом случае пишут $x_n \to a$ $(n \to \infty),$ или $$\lim\limits_{n\to\infty} x_n = a.$$ В кванторах это определение выглядит следующим образом: $$\lim\limits_{n\to\infty} = a\;\Longleftrightarrow\;\forall\varepsilon > 0\;\exists N \equiv N_{\varepsilon} : \forall n \ge N\;|x_n-a| < \varepsilon.$$

Если последовательность имеет предел, то говорят, что она сходится. В противном случае говорят, что последовательность расходится.

Для того чтобы выяснить геометрический смысл предела последовательности, перепишем неравенство $\left |x_n-a \right | < \varepsilon$ в таком эквивалентном виде $a-\varepsilon < x_n < a + \varepsilon.$ Тогда понятно, что с геометрической точки зрения равенство $\lim\limits_{n\to\infty} x_n = a$ означает, что все члены последовательности, начиная с некоторого номера $N(\varepsilon),$ зависящего от $\varepsilon,$ находится в $\varepsilon-$ окрестности точки $a.$ Вне этой окрестности находится, быть может, лишь конечное число элементов, а именно, те $x_n,$ номера $n$ которых меньше, чем $N(\varepsilon).$

В терминах окрестностей определение предела можно переформулировать следующим образом.

Определение. Число $a$ называется пределом последовательности $\{x_n\},$ если для любого $\varepsilon-$ окрестности $U_{\varepsilon}(a)$ числа $a$ найдётся такой номер $N(\varepsilon),$ начиная с которого все члены последовательности принадлежат этой окрестности, т. е. $$\forall U_{\varepsilon}(a)\;\exists N : \forall n \ge N\; x_n\in U_{\varepsilon}(a).$$

Пример 1.Пусть $x_n = a\;(n = 1, 2, …).$ Такая последовательность называется стационарной. Ясно, что $\lim\limits_{n\to\infty} x_n = a.$

Пример 2.Пусть $x_n = \frac{(-1)^n}{n}.$ Покажем, что $\lim\limits_{n\to\infty} \frac{(-1)^n}{n} = 0.$ Зададим $\varepsilon > 0$ и рассмотри неравенство $\left | \frac{(-1)^n}{n}-0 \right | = \frac{1}{n} < \frac{1}{\varepsilon}.$ Оно выполняется, если только $n > \frac{1}{\varepsilon}.$ Положим $N = \left [\frac{1}{\varepsilon} \right ] + 1,$ где $\left [b\right ]$ означает целую часть числа $b.$ Тогда из неравенства $n \ge N$ следует, что $n > \frac{1}{\varepsilon},$ а значит, $\left | \frac{(-1)^n}{n}-0 \right | = \frac{1}{n} < \frac{1}{\varepsilon}.$ Таким образом, мы показали по определению, что число $a = 0$ является пределом последовательности $x_n.$

Пример 3. Покажем, что $\lim\limits_{n\to\infty}(\sqrt{n+1}-\sqrt n) = 0.$ Зададим $\varepsilon > 0.$ Тогда получим, что неравенство $$\left |(\sqrt{n+1}-\sqrt n)-0\right | = \sqrt{n+1}-\sqrt n = \frac{1}{\sqrt{n+1}+\sqrt n} \le \frac{1}{\sqrt n} < \varepsilon$$ справедливо, если только $n > \frac{1}{\varepsilon^2}.$ Поэтому достаточно взять $N = \left [\frac{1}{\varepsilon^2}\right ]+1.$

Замечание. При доказательстве равенства $\lim\limits_{n\to\infty} x_n = a$ по определению не требуется находить наименьший номер $N,$ начиная с которого выполняется неравенство $\left |x_n-a \right | < \varepsilon.$ Достаточно лишь указать какой-нибудь номер $N(\varepsilon),$ начиная с которого $\left |x_n-a \right | < \varepsilon.$

Отрицание определения предела. Число $a$ не является пределом последовательности $\{x_n\},$ если найдётся такое положительное $\varepsilon ,$ что для любого $N$ существует $n \ge N$ такое, что $\left |x_n-a\right | \ge \varepsilon,$ т. е. $$\exists\varepsilon > 0 : \forall N\;\exists n \ge N : |x_n-a| \ge \varepsilon.$$В этой записи число $N$ не может зависеть от $\varepsilon,$ а $n$ зависит от $N.$

В терминах окрестностей получаем, что число $a$ не является пределом последовательности $\{x_n\},$ если найдётся такая окрестность числа $a,$ вне которой находится бесконечно много элементов последовательности $x_n.$

Теперь легко можем сформулировать в кванторах определение расходящейся последовательности: $$\forall a\;\exists\varepsilon = \varepsilon (a) > 0 : \forall N\;\exists n \ge N : |x_n-a| \ge \varepsilon.$$

Пример 4.Докажем, что последовательность $x_n = (-1)^n$ расходится. Зададим произвольное $a \in \mathbb{R}$ и положим $\varepsilon = \frac{1}{2}.$ Если $a \ge 0,$ то вне окрестности $(a-\varepsilon , a+\varepsilon )$ находятся элементы последовательности с нечётными номерами, а если $a < 0,$ то с чётными номерами. Итак, какое бы $N$ мы ни взяли, найдётся $n \ge N$ (например, $n = 2N+1,$ если $a \ge 0$ и $n = 2N,$ если $a < 0$), для которого справедливо неравенство $|x_n-a| \ge \varepsilon.$

Примеры решения задач

  1. Доказать исходя из определения, что число $1$ является пределом последовательности $$\{x_n\} = \frac{n}{n+1}.$$
    Решение

    Рассмотрим модуль разности $$\left | x_{n}-1 \right | = \left | \frac{n}{n+1}-1 \right | = \frac{1}{n+1}.$$
    Возьмем произвольное число $\varepsilon > 0.$ Должно выполняться неравенство $\frac{1}{n+1} < \varepsilon.$ Т. е при $n > \frac{1}{\varepsilon}-1$

    Выберем в качестве $N_{\varepsilon}$ какое-нибудь натуральное число, удовлетворяющее условию $N_{\varepsilon}>\frac{1}{\varepsilon}-1,$ например, число $N_{\varepsilon }=\left [ \frac{1}{\varepsilon}-1 \right ] + 1.$

    Тогда для всех $n\geq N_{\varepsilon }$ будет выполняться неравенство $$\left | x_{n}-1 \right | = \frac{1}{n+1} \le \frac{1}{N_{\varepsilon}+1} < \varepsilon.$$

    Это и означает, что $1$ является пределом последовательности $\{\frac{n}{n+1}\},$ то есть $$\lim\limits_{n\to \infty } \frac{n}{n+1} = 1.$$

    [свернуть]
  2. Пользуясь определением, найти предел последовательности $$\{x_n\} = \frac{n-1}{n}.$$
    Решение

    Докажем, что $\lim\limits_{n\to \infty } x_{n} = 1.$ Так как $x_{n}=1-\frac{1}{n},$ то $\left | x_{n}-1 \right |=\frac{1}{n}.$ Возьмем произвольное число $\varepsilon > 0.$ Неравенство $\left | x_{n}-1 \right | < \varepsilon$ будет выполняться, если $\frac{1}{n} < \varepsilon .$

    Выберем в качестве $N_{\varepsilon}$ какое-нибудь натуральное число, удовлетворяющее условию $N_{\varepsilon}> \frac{1}{\varepsilon},$ например, число $N_{\varepsilon }=\left [ \frac{1}{\varepsilon } \right ] + 1.$

    Тогда для всех $n\geq N_{\varepsilon }$ будет выполняться неравенство $\left | X_{n}-1 \right | = \frac{1}{n} \le \frac{1}{N_{\varepsilon }} < \varepsilon.$ По определению предела это означает, что $\lim\limits_{n\to \infty } x_{n} =1.$

    [свернуть]
  3. Доказать исходя из определения, что $$\lim\limits_{n\to \infty } \frac{2n}{n^3+1} = 0.$$
    Решение

    Возьмем произвольное число $\varepsilon > 0.$ Должно выполняться неравенство $\left | \frac{2n}{n^3+1} \right | < \varepsilon.$ $$\frac{2n}{n^3+1} < \frac{2}{n^2} < \varepsilon .$$

    Выберем в качестве $N_{\varepsilon}$ какое-нибудь натуральное число, удовлетворяющее условию $N_{\varepsilon}> \sqrt{\frac{2}{\varepsilon}},$ например, число $N_{\varepsilon }=\left [ \sqrt{\frac{2}{\varepsilon}} \right ] + 1.$

    Тогда для всех $n\geq N_{\varepsilon }$ неравенство будет выполняться. Следовательно $\lim\limits_{n\to \infty } \frac{2n}{n^3+1} = 0.$

    [свернуть]

Литература

  1. Лысенко З.М. Конспект практики по математическому анализу
  2. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. с. 15-17.
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.128-130.
  4. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — С. 37-39.

Предел последовательности

Тест на проверку усвоенного в пройденной теме.

7.6 Теоремы о среднем

Теорема 1 (первая теорема о среднем значении). Пусть функции $f$ и $g$ интегрируемы на $\left [ a,b \right ]$, причем функция $g$ не меняет знак на $\left [ a,b \right ]$. Пусть $m=\textrm{inf}_{x\in\left [ a,b \right ]}f(x), M=\textrm{sup}_{x\in\left [ a,b \right ]} f(x)$. Тогда найдется такое число $\mu\in\left [ m,M \right ]$, что $$\int_{a}^{b}f(x)g(x)dx=\mu\int_{a}^{b}g(x)dx.$$

Можем считать, что $a<b$, т.к. если поменять местами $a$ и $b$, то знаки обеих частей равенства поменяются на противоположные. Пусть $g(x)\geq0$. Неравенство $m\leq f(x)\leq M$ умножим на $g(x)$ и проинтегрируем от $a$ до $b$. В силу монотонности и линейности интеграла получим $$m\int_{a}^{b}g(x)dx\leq\int_{a}^{b}f(x)g(x)dx\leq M\int_{a}^{b}g(x)dx.$$ Если $\int_{a}^{b}g(x)dx=0$, то из этого неравенства видно, что утверждение теоремы справедливо при любом $\mu$. Если же $\int_{a}^{b}g(x)dx>0$, то положим $$\mu=\frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}.$$ Тогда из полученного выше равенства следует, что $m\leq\mu\leq M$, и теорема доказана.

Случай $g(x)\leq0$ рассматривается аналогично.

Следствие. Если в условиях теоремы 1 функция $f$ непрерывна на $\left [ a,b \right ]$, то найдется такая $\xi\in\left [ a,b \right ]$, что $$\int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx.$$

Действительно, в этом случае, по теореме Больцано — Коши о промежуточном значении, число $\mu$ является значением функции $f$ в некоторой точке $\xi\in\left [ a,b \right ]$.

Лемма.Пусть функция $g$ интегрируема на отрезке $\left [ a,b \right ]$. Тогда функция $G(x)\equiv\int_{a}^{x}g(t)dt (a\leq x\leq b)$ равномерно непрерывна на $\left [ a,b \right ]$.

Пусть $x^{\prime} , x^{\prime\prime} \in\left [ a,b \right ] , x^{\prime}<x^{\prime\prime}$. Тогда $$G(x^{\prime\prime})-G(x^{\prime})=\int_{a}^{x^{\prime\prime}}g(t)dt-\int_{a}^{x^{\prime}}g(t)dt =$$ $$=\int_{a}^{x^{\prime}}g(t)dt+\int_{x^{\prime}}^{x^{\prime\prime}}g(t)dt-\int_{a}^{x^{\prime}}g(t)dt=\int_{x^{\prime}}^{x^{\prime\prime}}g(t)dt.$$ Поскольку $g$ интегрируема, то она ограничена, т.е. существует такой $M$, что $\left | g(t) \right |\leq M$ для всех $t\in\left [ a,b \right ]$. Поэтому получаем $$\mid G(x^{\prime\prime})-G(x^{\prime})\mid\leq\int_{x^{\prime}}^{x^{\prime\prime}}\mid g(t)\mid dt\leq M(x^{\prime\prime} — x^{\prime}).$$ Отсюда следует, что функция $G$ равномерно непрерывна на $\left [ a,b \right ]$.

Теорема 2 (вторая теорема о среднем значении). Пусть функции $f$ и $g$ интегрируемы на $\left [ a,b \right ]$, причем функция $f$ монотонна на $\left [ a,b \right ]$. Тогда существует точка $\xi\in\left [ a,b \right ]$, такая, что $$\int_{a}^{b}f(x)g(x)dx=f(a)\int_{a}^{\xi}g(x)dx+f(b)\int_{\xi}^{b}g(x)dx.$$

Сначала предположим что $f$ убывает на $\left [ a,b \right ]$ и неотрицательна. Возьмем произвольные разбиение $a=x_{0}<x_{1}<…< x_{n}=b$ отрезка $\left [ a,b \right ]$. Тогда, по свойству аддитивности интеграла, $$I\equiv\int_{a}^{b}f(x)g(x)dx=\sum_{i=0}^{n-1}\int_{x_{i}}^{x_{i+1}}f(x)g(x)dx=$$ $$=\sum_{i=0}^{n-1}f(x_{i})\int_{x_{i}}^{x_{i+1}}g(x)dx+\sum_{i=0}^{n-1}\int_{x_{i}}^{x_{i+1}}\left [ f(x)-f(x_{i}) \right ]g(x)dx\equiv I^{\prime}+\rho.$$ Для оценки суммы $\rho$ воспользуемся тем, что интегрируемая функция $g$ ограничена, т.е. существует такое $M$, что $\mid g(x)\mid\leq M, x\in\left [ a,b \right ]$. Тогда получим $$\mid\rho\mid\leq\sum_{i=0}^{n-1}\int_{x_{i}}^{x_{i+1}}\mid f(x)-f(x_{i})\mid\mid g(x)\mid dx\leq M\sum_{i=0}^{n-1}\omega_{i}\Delta x_{i},$$ где $\omega_{i}$ — колебания функции f на $\left [ x_{i},x_{i+1} \right ]$. Правая часть стремится к нулю при стремлении к нулю диаметра разбиения в силу критерия интегрируемости Римана. Следовательно, сумма $I^{\prime}$ стремится к интегралу $I$. Оценим $I^{\prime}$. Для этого обозначим $G(x)=\int_{a}^{x}g(t)dt$. Получим $$I^{\prime}=\sum_{i=0}^{n-1}f(x_{i})\left [ G(x_{i+1}-G(x_{i}) \right ]=\sum_{i=0}^{n-1}f(x_{i}G(x_{i+1})-\sum_{i=0}^{n-1}f(x_{i})G(x_{i})=$$ $$=\sum_{i=1}^{n}f(x_{i-1})G(x_{i})-\sum_{i=1}^{n-1}f(x_{i})G(x_{i})=$$ $$f(x_{n-1})G(x_{n})+\sum_{i=1}^{n-1}\left [ f(x_{i-1})-f(x_{i}) \right ]G(x_{i}).$$ Мы воспользовались равенством $G(x_{0})=G(a)=0.$

Обозначим через $L$ и $U$ соответственно нижнюю и верхнюю грани функции $G$ на $\left [ a,b \right ]$. Поскольку, в силу леммы, функция $G$ непрерывна на $\left [ a,b \right ]$, то они существуют в силу первой теоремы Вейерштрасса. Учитывая также, что функция $f$, по предположению, неотрицательна и монотонно убывающая, т.е. $f(x_{i-1})-f(x_{i})\geq0$, получаем следующее неравенство: $$L\left [ f(x_{n-1})+\sum_{i=1}^{n-1}\left [ f(x_{i-1})-f(x_{i}) \right ] \right ]\leq$$ $$\leq I^{\prime}\leq U\left [ f(x_{n-1}+\sum_{i=1}^{n-1}\left [ f(x_{i-1})-f(x_{i}) \right ] \right ].$$ При этом мы использовали неравенство $L\leq G(x_{i})\leq U.$ Поскольку, как легко видеть, сумма в квадратных скобках равна $f(x_{0})=f(a)$, то полученное неравенство принимает вид $Lf(a)\leq I^{\prime}\leq Uf(a).$ Но поскольку $I^{\prime}\rightarrow I$ при $d\textrm(\prod)\rightarrow0$, то отсюда получаем $Lf(a)\leq I\leq Uf(a).$ Разделив это неравенство на $f(a)>0,$ получим $L\leq\frac{I}{f(a)}.$ Отсюда следует, что $I=f(a)G(\xi)$, а учитывая определение функции $G$, получаем равенство $$\int_{a}^{b}f(x)g(x)dx=f(a)\int_{a}^{\xi}g(x)dx (\xi\in\left [ a,b \right ]). (7.4)$$

Итак, равенство (7.4) доказано нами в предположении, что функция $f$ убывает и неотрицательна. Рассмотрим теперь случай, когда $f$ убывает на $\left [ a,b \right ]$. Положим $\bar{f}(x)=f(x)-f(b).$ Тогда $\bar{f}$ убывает и неотрицательна. По доказанному, найдется точка $\bar{\xi}$, такая что $$\int_{a}^{b}\bar{f}(x)g(x)dx=\bar{f}(a)\int_{a}^{\bar{\xi}}g(x)dx (\bar{\xi}\in\left [ a,b \right ]).$$ Учитывая, что $\bar{f}(x)=f(x)-f(b)$, отсюда получаем $$\int_{a}^{b}\left [ f(x)-f(b) \right ]g(x)dx=\left [ f(a)-f(b) \right ]\int_{a}^{\bar{\xi}}g(x)dx,$$ или, что то же самое, $$\int_{a}^{b}f(x)g(x)dx=f(a)\int_{a}^{\bar{\xi}}g(x)dx+f(b)\int_{a}^{b}g(x)dx-f(b)\int_{a}^{\bar{\xi}}g(x)dx=$$ $$=f(a)\int_{a}^{\bar{\xi}}g(x)dx+f(b)\int_{\bar{\xi}}^{b}g(x)dx.$$ Этим доказано равенство (7.3).

В случае когда функция $f$ возрастает и неотрицательна на $\left [ a,b \right ]$, аналогично тому, тому как было доказано равенство (7.4), можно показать, что существует такая точка $\xi$, что $$\int_{a}^{b}f(x)g(x)dx=f(b)\int_{\xi}^{b}g(x)dx. (7.5)$$ Далее, из (7.5) легко можно получить (7.3) точно так же, как и (7.3) было получено из (7.4).

Замечание. Формулы (7.3) — (7.5) называются формулами Бонне. В этих равенствах точки $\xi$, вообще говоря, разные. В самом деле, мы можем изменить функцию $f$ в точках $a$ и $b$, сохранив при этом монотонность функции $f$. При этом левая часть (7.3) не изменится, а изменение множителей $f(a)$ и $f(b)$ перед интегралами справа в (7.3), очевидно, повлечет изменение значение $\xi$ справа в (7.3).

Вторую теорему о среднем иногда записывают в следующем виде: $$\int_{a}^{b}f(x)g(x)dx=f(a+0)\int_{a}^{\xi^{\prime}}g(x)dx+f(b-0)\int_{\xi^{\prime}}^{b}g(x)dx.$$ В этом равенстве точка $\xi^{\prime}$, вообще говоря, не совпадает со значением $\xi$ в равенстве (7.3).

Примеры применения теорем о среднем.

Пример 1. Найти $$\lim_{n\rightarrow\infty}\int_{0}^{1}\frac{x^n}{1+x}dx.$$ Оценим $$0\leq\int_{0}{1}\frac{x^n}{1+x}dx\leq\int_{0}^{1}x^ndx=\frac{1}{n+1}.$$ Отсюда получаем $$\lim_{n\rightarrow\infty}\int_{0}^{1}\frac{x^n}{1+x}dx=0.$$

Пример 2. Найти $$\lim_{n\rightarrow\infty}\int_{0}{\frac{\pi}{2}}\sin^n xdx.$$ Зафиксируем $\varepsilon>0$. Тогда получим $$\int_{0}{\frac{\pi}{2}}\sin^n xdx=\int_{0}^{\frac{\pi}{2}-\frac{\varepsilon}{2}}\sin^n xdx+\int_{\frac{\pi}{2}-\frac{\varepsilon}{2}}^{\pi}{2}\sin^n xdx\leq$$ $$\leq(\sin(\frac{\pi}{2}-\frac{\varepsilon}{2}))^n\frac{\pi}{2}+{\varepsilon}{2}.$$ Поскольку $\sin(\frac{\pi}{2}-\frac{\varepsilon}{2})<1$, то первое слагаемое справа стремится к нулю при $n\rightarrow\infty$. Поэтому найдется такое $N$, что для всех $n\geq N$ справедливо неравенство $$(\sin(\frac{\pi}{2}-\frac{\varepsilon}{2}))^n\frac{\pi}{2}<\frac{\varepsilon}{2}.$$ Итак, для заданного $\varepsilon>0$ мы нашли номер $N$, начиная с которого $$\int_{0}{\frac{\pi}{2}}\sin^n xdx<\varepsilon.$$ Это означает что $$\lim_{n\rightarrow\infty}\int_{0}^{\frac{\pi}{2}}\sin^n xdx=0.$$

Пример 3. Оценить сверху $$I\equiv\int_{0}^{1}\frac{\sin x}{1+x^2}dx.$$

Первый способ.

Применяя первую теорему о среднем, получаем $$I=\frac{1}{1+\xi^2}\int_{0}^{1}\sin xdx=\frac{1}{1+\xi^2}(-\cos x)\mid_{0}^{1}=\frac{1}{1+\xi^2}(1-\cos 1)\leq 1-\cos 1.$$

Второй способ.

В силу первой теоремы о среднем $$I=\sin\eta\int_{0}{1}\frac{dx}{1+x^2}=\sin\eta \arctan x\mid_{0}^{1}=\frac{\pi}{4}\sin\eta\leq\frac{\pi}{4}\sin 1.$$

Пример 4. Оценить интеграл $$I\equiv\int_{A}^{B}\frac{\sin x}{x}dx, 0<A<B<+\infty.$$

Первый способ.

Применим вторую теорему о среднем. Для этого обозначим $f(x)=\frac{1}{x}$ и $g(x)=\sin x$. Функция $f$ монотонна на $\left [ A,B \right ]$, так что по второй формуле Бонне получаем $$I=\frac{1}{A}\int_{A}^{\xi}\sin xdx = \frac{1}{A}(-\cos x)\mid_{A}^{\xi}=\frac{1}{A}(\cos A — \cos \xi).$$ Отсюда следует, что $\mid I\mid\leq\frac{2}{A}.$

Второй способ.

Применяя первую теорему о среднем, получим $$I=\sin\xi\int_{A}^{B}\frac{dx}{x}=\sin\xi\ln\frac{B}{A}.$$ Отсюда следует, что $\mid I\mid\leq\ln\frac{B}{A}.$

Примеры решения задач

Пример 1 Найти среднее значение функции $f(x)=\sin^2 x$ на отрезке $\left [ 0;2\pi \right ]$.

Решение

Пользуясь теоремой о среднем имеем:$$\mu=\frac{1}{b-a}\int_{a}^{b}f(x)dx=\frac{1}{2\pi}\int_{0}^{2\pi}\sin^2 xdx=\frac{1}{4\pi}\int_{0}^{2\pi}(1-\cos 2x)dx=$$ $$=\frac{1}{4\pi}(x-\frac{1}{2}\sin 2x)\mid_{0}{2\pi}=\frac{1}{4\pi}(2\pi-\frac{1}{2}\sin 4\pi)=\frac{1}{2}.$$ Итак, $\mu=\frac{1}{2}.$

Литература

  • В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2009, ч.1, раздел 7 «интеграл Римана».(стр. 197 — 203).
  • Б. П. Демидович «Сборник задач и упражнений по математическому анализу» 13-е издание, 1997г.

Теоремы о среднем

4.7 Теоремы Вейерштрасса

Ранее мы показывали, что непрерывная в точке функция локально ограничена в некоторой окрестности этой точки. Однако из локальной ограниченности в каждой точке некоторого множества не следует ограниченность функции на всем множестве. Например, функция $f\left(x\right)=\frac{1}{x}\left(0<x<1\right)$ непрерывна в каждой точке $x_0 \in \left(0,1\right)$ и, следовательно, локально ограничена в каждой точке (т. е. для каждой точки $x_0 \in \left(0,1\right)$ существует такая окрестность $\left(x_0 − \delta, x_0 + \delta \right)$, в которой функция $f$ ограничена). Вместе с тем функция $f$ неограниченна на всем множестве $\left(0,1\right)$.

Первая теорема Вейерштрасса. Если функция $f$ непрерывна на отрезке $\left[a,b\right]$, то она ограничена на этом отрезке.

Предположим, что $f$ неограниченна на $\left[a,b\right]$. Это означает, что для любого $M$ найдется такое $x \in \left[a,b\right]$, что $\mid f\left(x\right)\mid > M$. Полагая $M = 1, 2, . . .$ , построим последовательность точек $x_n \in \left[a,b\right]$, таких, что $\mid f \left(x_n\right)\mid > n$. Так как последовательность $\left\{x_n\right\}$ ограничена, то, в силу леммы Больцано – Вейерштрасса, из нее можно выделить сходящуюся подпоследовательность $\left\{x_{n_{k}}\right\}$. Пусть $\left\{x_{n_{k}}\right\} \to c \left(k \to \infty \right)$. Тогда $c \in \left[a,b\right]$ (здесь существенно используется тот факт, что $\left[a,b\right]$ – отрезок). В силу непрерывности функции $f$ в точке $c$, имеем $f \left(x_{n_{k}}\right) \to f\left(c\right)$, т. е. $\left\{f \left(x_{n_{k}} \right)\right\}$ сходящаяся и, следовательно, ограниченная последовательность. С другой стороны, так как $\mid f \left(x_{n_{k}}\right) \mid > n_k$ , то последовательность $\left\{f \left(x_{n_{k}} \right)\right\}$ неограниченна. Полученное противоречие доказывает теорему.

Приведем еще одно доказательство первой теоремы Вейерштрасса, основанное на применении метода деления отрезка пополам.

Предположим, что $f$ неограниченна на $\left[a,b\right]$. Разделим $\left[a,b\right]$ пополам. Тогда хотя бы на одном из двух полученных отрезков функция $f$ неограниченна. Обозначим такой отрезок через $I_1$ (если $f$ неограниченна на обоих отрезках, то выберем любой из них). Разделим $I_1$ пополам и обозначим через $I_2$ тот из полученных отрезков, на котором функция $f$ неограниченна. Продолжая этот процесс, получим последовательность вложенных друг в друга отрезков $I_n$, длины которых $\mid I_n \mid =\frac{b-a}{2^{n}} \to 0 \left(n \to \infty \right)$. По лемме Кантора о вложенных отрезках, существует единственная точка $c \in \left[a,b\right]$, принадлежащая всем отрезкам $I_n$. Так как $f$ непрерывна в точке $c$, то $f$ локально ограничена в точке $c$, т. е. найдется такое $\delta > 0$, что $f$ ограничена на множестве $\left(c − \delta, c + \delta \right)\bigcap \left[a,b\right]$. Выберем номер $n$ настолько большим, что $\frac{b-a}{2^{n}} < \delta $. Тогда $I_n \subset \left(c − \delta, c + \delta \right)$. . Но из ограниченности $f$ на множестве $\left(c − \delta, c + \delta \right)\bigcap \left[a,b\right]$ следует, что $f$ ограничена также и на подмножестве $I_n$ этого множества, что противоречит выбору отрезков $I_n$.

Следствие из теоремы Больцано – Коши (свойство промежуточных значений) утверждает, что областью значений непрерывной на отрезке функции является промежуток. Но это может быть либо интервал, либо полуинтервал, либо отрезок. Мы уточним это следствие. Именно, покажем, что областью значений непрерывной на отрезке функции является отрезок.

Определение. Говорят, что функция $f$ ограничена сверху (снизу) на множестве $E$, если ограничено сверху (снизу) множество ее значений

$$f\left(E \right) \equiv \left\{f\left(x \right) : x \in E\right\}.$$

Верхней (нижней) гранью функции $f$ на множестве $E$ называют верхнюю (нижнюю) грань множества $f\left(E\right)$ и обозначают $\underset{x \in E}{\sup} f\left(x\right) \left(\underset{x \in E}{\inf} f\left(x\right)\right)$.

Если $A = \underset{x \in E}{\sup} f\left(x\right)$, то это означает, что

  1. для любого $x \in E$ справедливо неравенство $f\left(x\right) \leq A$;
  2. для любого $\varepsilon > 0$ найдется такое ${x}’ \in E$, что $f \left({x}’\right) > A − \varepsilon $.

Ясно, что эти два свойства равносильны определению верхней грани функции $f$.

Ранее отмечалось, что не каждое ограниченное сверху множество имеет наибольший элемент. Пусть ограниченное множество $f\left(E\right)$ является множеством значений некоторой функции $f$, заданной на множестве $E$. Если во множестве $f\left(E\right)$ существует наибольший элемент, т. е. если существует такое $x_0 \in E$, что $f \left(x_0\right) = \underset{x \in E}{\sup} f\left(x\right)$, то говорят, что функция $f$ достигает своей верхней грани. В противном случае говорят, что верхняя грань функции $f$ не достигается.

Аналогичные понятия формулируются и для нижней грани.

Зададимся вопросом: каждая ли ограниченная сверху функция достигает своей верхней грани? Ответ, очевидно, отрицательный.

Например, для функции $f\left(x\right) = x$, заданной на $\left(0, 1\right)$, $\underset{x \in \left(0,1\right)}{\sup} f\left(x\right) = 1$, но для любого $x \in \left(0, 1\right)$ справедливо неравенство $f\left(x\right) < 1$, т. е. верхняя грань не достигается. Другим примером может служить функция дробной части $f\left(x\right) = \left\{x\right\}$ на отрезке $\left[0, 1\right]$.

В первом примере функция непрерывна, но задана на интервале. Во втором примере функция задана на отрезке, но не является непрерывной на этом отрезке. Если же функция непрерывна на отрезке, то она достигает своей верхней грани. В этом и состоит

Вторая теорема Вейерштрасса. Пусть функция $f$ непрерывна на отрезке $\left[a,b\right]$. Тогда $f$ достигает своих верхней и нижней граней, т. е. существуют такие $\alpha$ , $\beta \in \left[a,b\right]$ , что

$$f\left(\alpha \right) = \underset{x \in \left[a,b\right]}{\sup} f\left(x\right), f\left(\beta \right) = \underset{x \in \left[a,b\right]}{\inf} f\left(x\right).$$

Согласно первой теореме Вейерштрасса, непрерывная на $\left[a,b\right]$ функция $f$ ограничена. Значит, существует конечное $M = \underset{x \in \left[a,b\right]}{\sup} f(x)$. По определению верхней грани, $f\left(x\right) \leq M$ при каждом $x \in \left[a,b\right]$, и для любого $\varepsilon > 0$ найдется такое ${x}’ \in \left[a,b\right]$, что $f \left({x}’\right) > M − \varepsilon $. Полагая $\varepsilon = \frac{1}{n} \left(n = 1, 2 . . . \right)$, построим последовательность точек $x_n \in \left[a,b\right]$, такую, что $f \left(x_n \right) > M − \frac{1}{n}$. Так как последовательность $\left\{x_n \right\}$ ограничена, то, по лемме Больцано – Вейерштрасса, из нее можно выделить сходящуюся подпоследовательность $\left\{x_{n_{k}}\right\}$. Обозначим $\alpha = \underset{k \to \infty}{\lim} x_{n_{k}}$. Тогда $\alpha \in \left[a,b\right]$. В силу непрерывности функции $f$ в точке $\alpha$, имеем $f\left(\alpha \right) = \underset{k \to \infty}{\lim} f\left(x_{n_{k}}\right)$. Но, поскольку $$M − \frac{1}{n_k} < f\left(x_{n_{k}}\right) \leq M < M + \frac{1}{n_k},$$ то отсюда следует, что $\underset{k \to \infty}{\lim} f\left(x_{n_{k}}\right) = M$. В силу единственности предела получаем, что $f\left(\alpha \right) = M$.

Аналогично показываем, что в некоторой точке $\beta \in \left[a, b \right]$ функция $f$ достигает своей нижней грани.

Приведем еще одно доказательство второй теоремы Вейерштрасса, основанное на применении первой теоремы Вейерштрасса.

Пусть функция $f$ непрерывна на отрезке $\left[a, b \right]$. Тогда, в силу первой теоремы Вейерштрасса, существует $M = \underset{x \in \left[a, b \right]}{\sup} f\left(x\right)$. Предположим, что функция $f$ не достигает своей верхней грани, т. е. пусть для каждого $x \in \left[a, b \right]$ справедливо неравенство $f\left(x\right) < M$. Тогда функция $\varphi \left(x \right) = \frac{1}{M-f\left(x\right)}$ непрерывна на $\left[a,b\right]$ (по теореме об арифметических свойствах непрерывных функций). Применяя к функции $\varphi$ первую теорему Вейерштрасса, получаем, что $\varphi$ ограничена на $\left[a,b\right]$, т. е. существует такое $M_{1} > 0$, что для всех $x \in \left[a,b\right]$ справедливо неравенство $\varphi \left(x\right) \leq M_1$. Но из этого неравенства вытекает, что $f \left(x\right) \leq M − \frac{1}{M_1}$ $\left(x \in \left[a, b \right] \right)$, а это противоречит тому, что число $M$ является верхней гранью, т. е. наименьшей из всех верхних границ функции $f$.

Свойство промежуточных значений и обе теоремы Вейерштрасса можно объединить в виде одной следующей теоремы.

Теорема. Областью значений непрерывной на отрезке функции является отрезок.

Пример:

Найти верхнюю и нижнюю грани функции на отрезке $f\left(x \right) = 2x^{3} — 12x^{2} + 18x + 4$ на отрезке $\left[\frac{1}{2}, 3 \right]$

Решение:

Сперва вычислим значения функции в критических точках, принадлежащих данному отрезку: ${f}’ \left(x \right) = {\left(2x^{3} — 12x^{2} + 18x + 4 \right)}’ = 6x^{2} — 24x + 18 = 6\left(x^{2} — 4x + 3 \right)$

Полученное квадратное уравнение имеет два действительных корня: $x_{1}=1, x_{2}=3$ – критические точки.

Первая и вторая критические точки принадлежат данному отрезку: $x_{1}=1, x_{2}=3 \in \left[\frac{1}{2}, 3 \right]$ Вычислим значение функции в нужных точках: $f\left(x_{1}\right) = f\left(1\right) = 2\cdot 1^{3} — 12 \cdot 1^{2} +18\cdot 1+4 = 2-12+18+4=12$ $f\left(x_{2}\right) = f\left(3\right) = 2\cdot 3^{3} — 12 \cdot 3^{2} +18\cdot 3+4 = 2\cdot 27 -12\cdot 9+ 54+4=4$

Теперь вычислим значения функции на концах отрезка: $ f\left(\frac{1}{2}\right) = 2\cdot \left(\frac{1}{2}\right)^{3} — 12 \cdot \left(\frac{1}{2}\right)^{2} +18\cdot \left(\frac{1}{2}\right)+4 = 2\cdot \frac{1}{8} — 12 \cdot \frac{1}{4}+18\cdot \frac{1}{2} +4 = 10 \frac{1}{4}$

Среди всех полученных чисел выбираем наибольшее и наименьшее, это и будут наши $\sup$ и $\inf$ соответственно

Ответ: $\underset{x \in \left[a, b \right]}{\sup} f\left(x\right) = f\left(1\right) = 12$, $\underset{x \in \left[a, b \right]}{\inf} f\left(x\right) = f\left(3\right) = 4$

Теоремы Вейерштрасса

Для закрепления материала пройдите следующий тест:

Литература

  1. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. с. 84-87.
  2. Б. П. Демидович «Сборник задач и упражнений по математическому анализу» 13-е издание, 1997 М.: Изд-во Моск. ун-та, ЧеРо — с. 50-51.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — c. 369-371.

5.3 Производная сложной и обратной функций

Теорема (о производной композиции). Пусть функция $f$ определена на интервале $I$ и дифференцируема в точке $x_0 ∈ I$, а функция $g$ определена на интервале $J ⊃ f(I)$ и дифференцируема в соответствующей точке $y_0 = f (x_0) ∈ J$. Тогда сложная функция $\varphi(x) = g(f(x))$ дифференцируема в точке $x_0$, причем $$\varphi'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

Так как функция $g$ дифференцируема в точке $y_0$,
то $$g(y)-g(y_0) = g'(y_0)\cdot (y-y_0)+r(y)\cdot (y-y_0),\quad\quad(5.1)$$ где $\displaystyle \lim_{y\to y_0}\, r(y)=0$. Доопределим функцию $r$ в точке $y_0$ по непрерывности, положив $r (y_0) = 0$. В равенстве (5.1) считаем, что $y = f(x)$. Тогда получим $$\varphi(x)-\varphi(x_0) = g'(y_0)(f(x)-f(x_0)) + r(f(x))(f(x)-f(x_0)).$$ Разделив это равенство на $x−x_0$ и устремив $x \to x_0$, получаем $$\displaystyle \lim_{x\to x_0}\, \frac{\varphi(x)-\varphi(x_0)}{x-x_0}=$$ $$=g'(f(x_0)) \displaystyle \lim_{x\to x_0} \, \frac{f(x)-f(x_0)}{x-x_0}+\displaystyle \lim_{x\to x_0} \, r(f(x))\frac{f(x)-f(x_0)}{x-x_0}.$$ Последний предел справа равен нулю, поскольку $\displaystyle \lim_{x\to x_0}\, r(f(x))=0$ (по теореме о непрерывности сложной функции) и $\displaystyle \lim_{x\to x_0}\, \frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)$. Итак, получили, что $\varphi'(x_0) = g'(f(x_0))\cdot f'(x_0)$.

Теорема (о производной обратной функции). Пусть функция $f$ строго возрастает на интервале $I$, непрерывна на $I$, дифференцируема в точке $x_0 \in I$ и $f'(x_0)\neq 0$. Тогда обратная функция $g = f^{-1}$ дифференцируема в точке $y_0 = f(x_0)$, причём $g'(x_0) = \frac{1}{f'(x_0)}$.

Рассмотрим разностное отношение $\frac{g(y)-g(y_0)}{y-y_0}$. Обозначим $x=g(y)$. Тогда $y=f(x)$ и $$\frac{g(y)-g(y_0)}{y-y_0}=\frac{x-x_0}{f(x)-f(x_0)}.$$ Поскольку функция $g$ непрерывна (в силу теоремы о непрерывности обратной функции), то при $y\to y_0$ имеем $x=g(y)\to g(y_0) = x_0$, и поэтому $$\displaystyle \lim_{y\to y_0}\,\frac{g(y)-g(y_0)}{y-y_0}=\frac{1}{\displaystyle \lim_{x\to x_0}\,\frac{f(x)-f(x_0)}{x-x_0}}=\frac{1}{f'(x_0)},$$ т. е. существует предел левой части и он равен $\frac{1}{f'(x_0)}$.

Практические задания
1. Найти производную обратной функции $g(y)=\arcsin x,\, -\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2},\, -1\leqslant x\leqslant 1$.

Решение

Обратная функция к $g(y)$: $$f(x)=g^{-1}(y)=\sin y,$$
Пользуясь вышеописанными формулами и таблицей производных получаем: $$g'(y)=(\arcsin x)’ = \frac{1}{x’} = \frac{1}{\cos y}$$ Так как $-\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2}$, то $\cos y > 0$, поэтому $\cos y=\sqrt{1-\sin^2 y}=\sqrt{1-x^2}$. Таким образом, $(\arcsin x)’=\frac{1}{\sqrt{1-x^2}}$.

2. Найти производную обратной функции $g(y)=\text{arctg x},\, -\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2},\, -\infty <x< +\infty$

Решение

Обратная функция к $g(y)$: $$f(x)=g^{-1}(y)=\text{tg y}$$
Пользуясь вышеописанными формулами и таблицей производных имеем: $$g'(y)=(\text{arctg x})’=\frac{1}{f'(x)}=\cos^2 y=\frac{1}{1+\text{tg}^2 y}=\frac{1}{1+x^2};$$ итак, $(\text{arctg x})’=\frac{1}{1+x^2}$.

3. Найти производную сложной функции $y=\ln^2\arcsin \frac{1}{x},\, x>1$

Решение

Используя вышеприведённые формулы и таблицу производных получаем:$$y’=(\ln^2\arcsin\frac{1}{x})’=2\ln\arcsin\frac{1}{x}(\ln\arcsin\frac{1}{x})’=$$ $$=2\ln\arcsin\frac{1}{x}\frac{1}{\arcsin\frac{1}{x}}(\arcsin\frac{1}{x})’=$$ $$=2\frac{\ln\arcsin\frac{1}{x}}{\arcsin\frac{1}{x}}\frac{1}{\sqrt{1-\frac{1}{x^2}}}(\frac{1}{x})’=-\frac{2\ln\arcsin\frac{1}{x}}{|x|\sqrt{x^2-1}\arcsin\frac{1}{x}}$$

4. Найти производную сложной функции $y=\frac{1}{2a}\ln|\frac{x-a}{x+a}|,\, x\neq a,\, x\neq -a$.

Решение

Используя вышеприведённые формулы и таблицу производных получаем:$$y’=\frac{1}{2a}\frac{(\frac{x-a}{x+a})’}{\frac{x-a}{x+a}}=$$ $$=\frac{1}{2a}\frac{x+a}{x-a}\frac{x+a-(x-a)}{(x+a)^2}=\frac{1}{x^2-a^2}$$

Тестирование. Производная сложной и обратной функции

Пройдите тест для проверки понимания только что прочитанной темы