M1383. О сумме чисел с разными степенями

Задача из журнала «Квант» (1993 год, 11/12 выпуск)

Условие

Пусть сумма $n$ чисел равна $0$, причем $m$ — наименьшее из них, а $M$ — наибольшее. Докажите, что

  1. сумма квадратов этих чисел не превосходит $-mMn$;
  2. сумма четвертых степеней этих чисел не превосходит $-mMn(m^2 + M^2 +mM)$.

Решение

Пусть $x_{1}, x_{2}, \ldots, x_{n}$ — числа задачи: $$ m \leqslant x_{i} \leqslant M, x_{1}+x_{2}+ \ldots +x_{n} = 0$$

Обозначим сумму их квадратов через $D$, а сумму четвертых степеней — через $F.$

  1. Первое решение. Для каждого числа $x_{i}$ задачи имеем $$(x_{i} — m)(x_{i} — M)\leqslant 0,$$ или $$x_{i}^{2} \leqslant(m+M) x_{i}-m M. \tag{*}$$

    Сложив $n$ этих неравенств, получаем $$D \leqslant -nmM.$$

    Второе решение. При $m = M$ утверждение очевидно. Пусть $m<M$. Расположим в точках $(x_{i},x_{i}^{2})$, где $x_{i}$ — числа задачи, единичные массы. Проведем через точки $(m, m^2)$ и $(M, M^2)$ прямую. Ее уравнение —

    $$\frac{x-m}{M-m}=\frac{y-m^{2}}{M^{2}-m^{2}}.$$

    Поскольку все массы расположены под прямой, этим же свойством обладает и центр масс $(0, D/n).$ Поэтому $$-m(m+M)+m^{2} \geqslant \frac{D}{n},$$ что и требовалось доказать.

  2. Первое решение. Как и во втором решении пункта а) будем считать $m<M$. Попытаемся найти многочлен $x^4 + ax + b$, имеющий корнями числа $m$ и $M$. Заметим сразу, что многочлен такого вида имеет не более двух корней. Действительно, между любыми последовательными корнями многочлена найдется корень его произведения. Следовательно, если многочлен имеет хотя бы три корня, то его производная $4 x^{3} + a$ имеет не менее двух корней. Но уравнение $4 x^{3} = -a$ имеет единственный корень. Тогда из системы $$\left\{\begin{array}{l}m^{4}+a m+b=0 \\M^{4}+a M+b=0 \end{array}\right.$$ получаем $$a=-\left(m^{2}+M^{2}\right)(m+M),$$ $$b=m M\left(m^{2}+M^{2}+m M\right).$$

    С другой стороны, при этих значениях $a$ и $b$ равенства системы выполняются. Окончание решения аналогично первому решению пункта а).

    Второе решение. Рассуждая так же, как при втором решении пункта а), получаем уравнение прямой $$\frac{x-m}{M-m}=\frac{y-m^{4}}{M^{4}-m^{4}},$$ после чего без труда приходим к неравенству $$-m\left(M^{2}+m^{2}\right)(M+m)+m^{4} \geqslant \frac{F}{n},$$ что и требовалось доказать.

    Третье решение. Для каждого числа $x_{i}$ задачи из (*) следует $$\begin{aligned}
    x_{i}^{4} & \leqslant\left((m+M) x_{i}-m M\right)^{2}=\\
    &=(m+M)^{2} x_{i}^{2}-2(m+M) m M x_{i}+m^{2} M^{2}.
    \end{aligned}$$

    Сложив $n$ этих неравенств и воспользовавшись утверждением пункта а), получаем $$F \leqslant-n m M(m+M)^{2}+n m^{2} M^{2},$$ что и требовалось доказать.

  3. Замечание. Неравенство (*), а следовательно, и неравенства задачи превратятся в равенства, если $k$ из чисел $x_{i}$ равны $m$, а $n-k$ остальных равны $M$ (при этом $k m+(n-k) M=0$).

Н.Васильев, В.Сендеров, Л.Туцеску

M1383. О сумме чисел с разными степенями: 5 комментариев

    1. А Вас не смущает, что за пределами статьи продолжают действовать Ваши стили списков? Посмотрите на значки социальных сетей в разделе «Поделиться ссылкой».

        1. Тогда давайте посмотрим на ключевые слова. У вас их три. Два из них взяты из названия рубрики и просто ее дублируют — «задача», «Квант». А один вполне осмысленный — «сумма». Вы убеждены, что этим единственным «хештегом» можно охарактеризовать задачу?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *