5.7.2 Разложения основных элементарных функций

Формулу Тейлора с центром в точке $x_0 = 0$ называют формулой Маклорена
$$f(x) = f(0) + \frac{f’(0)}{1!}x + \frac{f’’(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \bar{o}\left(x^n\right) \ (x \to 0).$$

Построим разложения некоторых функций по формуле Маклорена.

  1. $f\left(x\right) = e^x$, $f’(x) = f’’(x) = \cdots = f^{(n)}(x) = e^x$, $f(0) = f’(0) = \cdots = f^{(n)}(0) = 1$. Поэтому получаем
    $$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots + \frac{1}{n!}x^n + \bar{o}\left(x^n\right) = \\ = \sum_{k=0}^n \frac{1}{k!}x^k + \bar{o}\left(x^n\right).$$
  2. $f(x) = \sin x$, $f’(x) = \cos x$, $f’’(x) = -\sin x$, $f’’’(x) = -\cos x$, $f^{(4)}(x) = \sin x$. Теперь легко видеть, что $f^{(k)}(x) = \sin{\left(x + \displaystyle\frac{k\pi}{2}\right)} \ \left(k = 0, 1, \ldots\right)$. Поэтому
    $$f^{(k)}(0) = \begin{cases} 0, \ k = 2s, \ s = 0, 1, \ldots, \\ \left(-1\right)^s, \ k = 2s+1, \ s=0, 1, \ldots . \end{cases}$$
    Таким образом, получаем
    $$\sin x = 0 + \frac{1}{1!}x + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \frac{0}{4!}x^4 + \frac{1}{5!} + \cdots + \\ +\left(-1\right)^n \frac{1}{\left(2n + 1\right)!}x^{2n + 1} + \frac{0}{\left(2n + 2\right)!}x^{2n + 2} + \bar{o}\left(x^{2n + 2}\right) = \\ = x — \frac{x^3}{3!} + \frac{x^5}{5!} — \cdots + \left(-1\right)^n\frac{x^{2n + 1}}{\left(2n + 1\right)!} + \bar{o}\left(x^{2n + 2}\right) = \\ = \sum_{k=0}^n \left(-1\right)^k \frac{x^{2k + 1}}{\left(2k + 1\right)!} + \bar{o}\left(x^{2n + 2}\right).$$
  3. $f\left(x\right) = \cos x$. Как и в предыдущем примере, легко убедиться в том, что $f^{(k)}\left(x\right) = \cos{\left(x + \displaystyle\frac{k\pi}{2}\right)} \ \left(k = 0, 1, \ldots\right)$. Отсюда
    $$f^{(k)}\left(0\right) = \begin{cases} \left(-1\right)^s, \ k = 2s, \\ 0, \ k = 2s + 1, \end{cases}$$ и тогда
    $$\cos x = 1 + \frac{0}{1!}x + \frac{-1}{2!}x^2 + \frac{0}{3!}x^3 + \frac{1}{4!}x^4 + \cdots + \\ + \frac{\left(-1\right)^n}{\left(2n\right)!}x^{2n} + \frac{0}{\left(2n + 1\right)!}x^{2n + 1} + \bar{o}\left(x^{2n + 1}\right) = \\ = 1 -\frac{x^2}{2!} + \frac{x^4}{4!} — \cdots + \left(-1\right)^n \frac{x^{2n}}{\left(2n\right)!} + \bar{o} \left(x^{2n + 1}\right) = \\ = \sum_{k=0}^n \left(-1\right)^k \frac{x^{2k}}{\left(2k\right)!} + \bar{o} \left(x^{2n + 1}\right).$$
  4. Функция $f(x) = \left(1 + x\right)^{\alpha} \ \left(\alpha \in \mathbb{R}\right)$ определена в окрестности нуля единичного радиуса. Имеем
    $$f’\left(x\right) = \alpha\left(1 + x\right)^{\alpha -1}, \ f’\left(0\right) = \alpha, \\ f’’\left(x\right) = \alpha\left(\alpha -1\right)\left(1 + x\right)^{\alpha -2}, \ f’’\left(0\right) = \alpha\left(\alpha -1\right), \ldots , \\ f^{(k)}\left(x\right) = \alpha\left(\alpha -1\right) \ldots \left(\alpha -k + 1\right) \left( 1 + x\right)^{\alpha -k}, \\ f^{(k)}\left(0\right) = \alpha \left(\alpha -1\right)\ldots \left(\alpha -k + 1\right).$$ Поэтому
    $$\left(1+x\right)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha \left(\alpha -1\right)}{2!}x^2 + \frac{\alpha \left(\alpha -1\right) \left(\alpha -2\right)}{3!}x^3 + \ldots + \\ + \frac{\alpha \left(\alpha -1\right) \ldots \left(\alpha -n + 1\right)}{n!}x^n + \bar{o}\left(x^n\right) = \\ = 1 + \sum_{k=1}^n \frac{\alpha \left(\alpha -1\right) \ldots \left(\alpha -k + 1\right)}{k!}x^k + \bar{o} \left(x^n\right).$$
    В частности, если $\alpha = n$, то получим $$\left(1 + x\right)^n = 1 + nx + \frac{n\left(n -1\right)}{2!}x^2 + \ldots + x^n,$$ т. е. формулу бинома Ньютона. Если же $\alpha = -1$, то $$\frac{1}{1 + x} = 1 -x + x^2 -\ldots + \left(-1\right)^nx^n + \bar{o}\left(x^n\right)$$ — сумма геометрической прогрессии со знаменателем $-x$ и первым слагаемым, равным $1$.
  5. Функция $f(x) = \ln{\left(1 + x\right)}$ определена в окрестности нуля радиуса $1$. Имеем $f\left(0\right) = 0$,
    $$f’(x) = \frac{1}{1 + x}, \ f’\left(0\right) = 1, \\ f’’\left(x\right) = -\frac{1}{\left(1 + x\right)^2}, \ f’’\left(0\right) = -1, \\ f’’’\left(x\right) = \frac{2}{\left(1 + x\right)^3}, \ f’’’\left(0\right) = 2, \\ f^{(4)}\left(x\right) = \frac{-2\cdot 3}{\left(1 + x\right)^4}, \ f^{(4)}\left(0\right) = -2\cdot 3,\ldots , \\ f^{(k)}\left(x\right) = \frac{\left(-1\right)^{k -1}\left(k -1\right)!}{\left(1 + x\right)^k}, \ f^{(k)}\left(0\right) = \left(-1\right)^{k -1}\left(k -1\right)!, \ k = 1,2, \ldots$$
    Отсюда имеем $$\ln{\left(1 + x\right)} = x -\frac{x^2}{2} + \frac{x^3}{3} -\frac{x^4}{4} + \ldots + \left(-1\right)^{n -1}\frac{x^n}{n} + \bar{o}\left(x^n\right) = \\ = \sum_{k=1}^{n} \left(-1\right)^{k -1}\frac{x^k}{k} + \bar{o}\left(x^n\right).$$

Примеры решения практических заданий

  1. Вычислить предел $$I = \lim_{x \to 0} \displaystyle\frac{e^x \sin{x} -x\left(1 + x\right)}{x^3}.$$
    Решение

    Используя равенства $$e^x = 1 + x + \displaystyle\frac{x^2}{2} + \bar{o}\left(x^2\right), \ \sin{x} = x -\displaystyle\frac{x^3}{6} + \bar{o}\left(x^4\right),$$ получаем
    $$I = \lim_{x \to 0} \displaystyle\frac{\left(1 + x + \displaystyle\frac{x^2}{2} + \bar{o}\left(x^2\right)\right) \left(x -\displaystyle\frac{x^3}{6} + \bar{o}\left(x^4\right)\right) -x -x^2}{x^3} = $$ $$ = \lim_{x \to 0} \displaystyle\frac{x + x^2 + \displaystyle\frac{x^3}{2} -\displaystyle\frac{x^3}{6} + \bar{o}\left(x^3\right) -x -x^2}{x^3} = \displaystyle\frac{1}{3}.$$

  2. Вычислить предел $$I = \lim_{x \to 0} \frac{1 -\left(\cos{x}\right)^{\sin{x}}}{x^3}.$$
    Решение

    Поскольку $\sin{x} \ln{\cos{x}} \to 0 \ \left(x \to 0\right)$, то
    $$I = \lim_{x \to 0} \frac{1 -e^{\sin{x}\ln{cos{x}}}}{x^3} = \lim_{x \to 0} \frac{1 -\left(1 + \sin{x}\ln{\cos{x}} + \bar{o}\left(\sin{x}\ln{\cos{x}}\right)\right)}{x^3}.$$
    Воспользуемся следующими равенствами: $$\bar{o}\left(\sin{x}\ln{cos{x}}\right) = \bar{o}\left(x\left(\cos{x} -1\right)\right) = \bar{o}\left(x^3\right), $$ $$\sin{x} = x + \bar{o}\left(x^2\right), \ \ln{\cos{x}} = \ln{\left(1 + \left(\cos{x} -1\right)\right)} = $$ $$= \cos{x} -1 -\frac{\left(\cos{x} -1\right)^2}{2} + \bar{o}\left(\left(\cos{x} -1\right)^2\right) = -\displaystyle\frac{x^2}{2} + \bar{o}\left(x^3\right).$$
    Поэтому получим $$I = \lim_{x \to 0} \displaystyle\frac{-\left(x + \bar{o}\left(x^2\right)\right) \left(-\displaystyle\frac{x^2}{2} + \bar{o}\left(x^3\right)\right) + \bar{o}\left(x^3\right)}{x^3} = $$ $$ = \lim_{x \to 0} \displaystyle\frac{\displaystyle\frac{x^3}{2} + \bar{o}\left(x^3\right)}{x^3} = \displaystyle\frac{1}{2}.$$

  3. Вычислить предел $$I = \lim_{x \to + \infty}\left(\sqrt[6]{x^6 + x^5} -\sqrt[6]{x^6 -x^5}\right).$$
    Решение

    $$I = \lim_{x \to +\infty} \left(\sqrt[6]{x^6 + x^5} — \sqrt[6]{x^6 -x^5}\right) = \lim_{x \to +\infty} \left(x\sqrt[6]{1 + \frac{1}{x}} — x\sqrt[6]{1 — \frac{1}{x}}\right) = $$
    $$ = \lim_{x \to +\infty} x\left(\left(1 + \frac{1}{x}\right)^{\frac{1}{6}} -\left(1 -\frac{1}{x}\right)^{\frac{1}{6}}\right) = $$
    Воспользовавшись разложениями
    $$\left(1 + \frac{1}{x}\right)^{\frac{1}{6}} = 1 + \frac{1}{6x} -\frac{5}{72x^2} + \bar{o} \left(\frac{1}{x^2}\right)$$
    $$\left(1 -\frac{1}{x}\right)^{\frac{1}{6}} = 1 -\frac{1}{6x} -\frac{5}{72x^2} + \bar{o}\left(\frac{1}{x^2}\right)$$ получаем
    $$I = \lim_{x \to +\infty} x\left(\frac{1}{3x} + \bar{o}\left(\frac{1}{x^2}\right)\right) = \lim_{x \to +\infty} \left(\frac{1}{3} + \bar{o}\left(\frac{1}{x}\right)\right) = \frac{1}{3}$$

  4. Вычислить предел $$I = \lim_{x \to +0} \frac{a^x + a^{-x} -2}{x^2} \ \left(a > 0\right).$$
    Решение

    $$I = \lim_{x \to +0} \frac{a^x + a^{-x} -2}{x^2} = \lim_{x \to +0} \frac{e^{x\ln{a}} + e^{-x\ln{a}} -2}{x^2}$$
    Воспользовавшись следующими разложениями
    $$e^{x\ln{a}} = 1 + x\ln{a} + \frac{x^2}{2!}\ln^{2}{a} + \bar{o}\left(x^2\right), $$
    $$e^{-x\ln{a}} = 1 — x\ln{a} + \frac{x^2}{2!}\ln^{2}{a} + \bar{o}\left(x^2\right)$$ имеем

    $$I = \lim_{x \to +0} \left(\ln^{2}{a} + \bar{o}\left(1\right)\right) = \ln^{2}{a} \ \left(a > 0\right).$$

Разложения основных элементарных функций

Пройдите тест, чтобы проверить свои знания о разложениях основных элементарных функций

Таблица лучших: Разложения основных элементарных функций

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

См. также:

7.2 Суммы Дарбу и интегралы Дарбу

Пусть $ f $ — ограничена на отрезке $ [a,b] $ функция. Выберем произвольное разбиение этого отрезка $\prod$ : $a = x_{0} < x_{1} < \cdots < x_{n} = b$ и обозначим $$\displaystyle M_{i}=\underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (x \right ), m_{i}=\underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f \left ( x \right ) \left ( i= \overline{0,n-1}\right ).$$

Определение. Сумма $$ \bar S_{\prod} =\sum_{i=0}^{n-1} M_{i} \Delta x_{i}$$ называется верхней суммой Дарбу для функции $f$, соответствующей разбиению $\prod$, а сумма
$$ \underline S_{\prod} = \sum_{i=0} ^ {n-1} m_{i} \Delta x_{i}$$ называется нижней суммой Дарбу, соответствующего разбиению $ \prod$.

Очевидно, что $ \underline S_{\prod} \leqslant \overline {S_{\prod}}$, и любая интегральная сумма $\sigma$, соответствующая разбиению $ \prod$, удовлетворяет неравенству $$\begin{equation}\label{eq:exp1} \underline S_{\prod} \leqslant \sigma \leqslant \overline {S_{\prod}}. \end{equation} $$

Действительно, при любом выборе точек $ \xi_{i} \in [x_{i},x_{i+1}] $ из определения $m_{i} $ и $ M_{i} $ получаем $m_{i} \leqslant f \left (\xi _{i}\right ) \leqslant M_{i}$. Умножив это неравенство на $ \Delta x_{i} $ и сложив по $ i$, получаем $\eqref{eq:exp1}$.

Если функция $ f $ непрерывна на $ [a,b]$, то на каждом из частичных отрезков $ [x_{i},x_{i+1}] $ она достигает своего наибольшего и наименьшего значений, т.е. точки $\xi_{i}$ и $\eta_{i}$ можно выбрать так, чтобы были выполнены равенства $ f \left (\xi_{i}\right ) = m_{i} $ и $ f \left (\eta_{i}\right )= M_{i}$. Поэтом в этом случае суммы Дарбу сами являются интегральными суммами. Однако справедливо следующее

Утверждение. Для произвольной ограниченной функции $f$ и заданного разбиения $\prod$ верхняя и нижняя суммы Дарбу сами являются соответственно верхней и нижними гранями множества всех интегральных сумм, соответствующих заданному разбиению $\prod$.

Действительно,зададим $\varepsilon > 0 $ и, пользуясь определением верхней грани, для каждого $i=\overline{0,n-1} $ найдем такие $\eta_{i} \in [x_{i},x_{i+1}]$, что $f\left (\eta_{i}\right ) > M_{i} — \varepsilon$. Тогда получим $$\sigma =\sum_{i=0}^{n-1} f\left ( \eta_{i}\right ) \Delta x_{i} > \sum_{i=0}^{n-1} M_{i} \Delta x_{i}-\varepsilon \left (a-b\right ) = \bar S_{\prod}-\varepsilon \left (a-b\right ).$$
Отсюда следует, что $ \bar S_{\prod}= \sup\left (\sigma\right )$, где верхняя грань берется по множеству всевозможных интегральных сумм, соответствующих заданному разбиению $\prod.$
Доказательство для нижней суммы Дарбу аналогично.

Свойства сумм Дарбу

1. Если к имеющимся точкам разбиения добавить новые точки, то от этого верхняя сумма Дарбу не увеличится, а нижняя сумма Дарбу не уменьшится

Пусть имеется изначально разбиение $\prod$. Достаточно показать рассмотреть случай, когда к имеющимся точкам добавляется одно точка $ x{}’_{i} \in [x_{i},x_{i+1}]$, в результате чего получаем новое разбиение $ \prod{}’$. Тогда суммы $ \bar S_{\prod} $ и $ \bar S_{\prod {}’} $ содержат одни и те же слагаемые, за исключением слагаемых, отвечающие отрезку $ [x_{i},x_{i+1}]$. В сумме $\bar S_{\prod} $ этому отрезку отвечает слагаемое $ M_{i}\left (x_{i+1} -x_{i}\right )$, а в сумме $ \bar S_{\prod {}’} $ ему соответствуют два слагаемых $ M{_{i}}’\left (x{}’-x_{i}\right )+M_{i}{}'{}’ \left (x_{i+1}-x_{i}\right )$, где $ M{_{i}}’=\underset{\displaystyle x_{i} \leqslant x \leqslant x{}’}{\sup} f\left (x\right )$, $ M_{i}{}'{}’=\underset{\displaystyle x{}’ \leqslant x \leqslant x_{i+1} }{\sup} f\left (x\right )$. Ясно, что $ M{_{i}}’ \leqslant M_{i}$. и $ M_{i}{}'{}’ \leqslant M_{i}$. Поэтому $ M{_{i}}’\left (x{}’ -x_{i}\right ) + M_{i}{}'{}’ \left (x_{i+1} -x{}’\right ) \leqslant M_{i}\left (x_{i+1} -x_{i}\right )$, так что и $ \bar{S_{\prod {}’}} \leqslant \bar{S_{\prod}}$.
Для нижних сумм доказательство аналогичное.

2. Каждая нижняя сумма Дарбу не превосходит каждой верхней суммы Дарбу, даже если они соответствуют разным разбиениям

Пусть $ \prod_{1}$, $ \prod_{2} $ — произвольные разбиения отрезка $ [a,b].$ Докажем, что $ \underline S_{\prod_{1}} \leqslant \bar S_{\prod_{2}}$. Объединяя точки разбиений $ \prod_{1} $ и $ \prod_{2}$, получим новое разбиение $ \prod$, причем, поскольку $ \prod_{1} $ может быть получено из $ \prod_{1} $ путём добавления к $ \prod_{1} $ новых точек деления, то, в силу предыдущего свойства, имеем $ \underline S_{\prod_{1}} \leqslant \underline S_{\prod}$. С другой стороны, разбиение $ \prod $ может быть получено из $ \prod_{2} $ путем добавления к $ \prod_{2} $ новых точек деления, так, что, в силу предыдущего свойства, $ \bar S_{\prod} \leqslant \bar S_{\prod_{2}}$. Объединяя эти два неравенства и учитывая, что $ \underline S_{\prod} \leqslant \bar S_{\prod}$, получаем $ \underline S_{\prod_{1}} \leqslant \bar S_{\prod_{2}}$.

Интегралы Дарбу.

Пусть функция $ f $ ограничена на отрезке $ [a,b]$, т.е. $ \left | f\left (x\right ) \right |\leqslant M$, $ a\leqslant x\leqslant b$. Тогда для любого разбиения $ \prod $ справедливы неравенства $ \left |\bar S_{\prod} \right | \leqslant M\left (b-a\right ) $ и $ \left |\underline S_{\prod} \right | \leqslant M\left (b-a\right )$. Это означает, что множества всевозможных верхних и нижних сумм Дарбу являются ограниченными.

Определение. Верхняя грань множества всевозможных нижних сумм Дарбу называется нижним интегралом функции $ f $ и обозначается $ \underline I = \sup_{\prod} {\underline S_{\prod}}$. Нижняя грань множества всевозможных верхних сумм Дарбу называется верхним интегралом и обозначается $ \bar I = \inf_{\prod} {\bar S_{\prod}}$.

Связь между верхним и нижним интегралами устанавливает

Утверждение. Для любой ограниченной функции $ f $ справедливо неравенство $ \underline I \leqslant \bar I. $

Как было показано выше,каждая нижняя сумма Дарбу не превосходит каждой верхней суммы Дарбу, т.е. для любых двух разбиений $ \prod $ и $ \prod{}’ $ справедливо неравенство $ \underline I \leqslant \bar I. $ Переходя к верхней грани по всевозможным разбиениям $ \prod$, получаем $ \underline I \leqslant \bar S_{\prod{}’}$. Поскольку в полученном неравенстве разбиение $ \prod{}’ $ произвольное, то переходя к нижней грани по всевозможным разбиениям, получим $ \underline I \leqslant \bar I$.

Пример. Рассмотрим функцию Дирихле на отрезке $ [0,1]$. Для нее, очевидно, при любом разбиении $ \prod $ будет $ \underline S_{\prod} = 0$, так что и $ \underline I = 0$. С другой стороны, $ \bar S_{\prod} = 1$, так что $ \bar I = 1$.

Теорема (критерий интегрируемости по Риману). Пусть функция $ f $ ограничена на отрезке $ [a,b]$. Для того чтобы $ f $ была интегрируемой на этом отрезке, необходимо и достаточно, чтобы было выполнено равенство $$\lim_{d\left (\prod\right )\rightarrow 0}\left (\bar S_{\prod} -\underline S_{\prod}\right ) = 0$$
Это равенство означает, что для любого положительного $\varepsilon$ найдется такое положительное
$\delta$, что для каждого разбиения $\prod$, диаметр которого $d\left (\prod\right )<\delta$, справедливо неравенство $\bar S_{\prod} - \underline S_{\prod} < \varepsilon.$

Необходимость. Пусть функция $ f $ интегрируема, т.е. существует конечный $$I\equiv\lim_{d\left (\prod\right )\rightarrow 0}\sigma$$
Это означает, что для любого $ \varepsilon > 0 $ найдется такое $ \delta > 0$, что для любого разбиения $\prod$ с $d\left (\prod\right ) < \delta$ и при любом выборе промежуточных точек $\xi _{i}$ выполнено неравенство $\left | \sigma -I \right | < \varepsilon$. Это неравенство можно переписать так: $I-\varepsilon <\sigma < I + \varepsilon$. Зафиксируем произвольное разбиение$\prod$ с $d\left (\prod\right ) < \delta$. Поскольку $\bar S_{\prod}$- верхняя грань множества всех интегральных сумм $\sigma$, соответствующих разбиению $\prod$, и $\sigma < I +\varepsilon$, то $\bar S_{\prod} \leqslant I +\varepsilon$. Аналогично получаем $\underline S_{\prod} \geq I - \varepsilon$. Таким образом, $I - \varepsilon \leqslant \underline S_{\prod} \leqslant \bar S_{\prod} \leqslant I + \varepsilon$. Отсюда следует, что $\bar S_{\prod} -\underline S_{\prod} \leqslant 2\varepsilon$, если только $d\left (\prod\right ) < \delta.$

Достаточность. Заметим, что для любого разбиения $\prod$ справедливо неравенство $\underline S_{\prod}\leqslant \underline I\leqslant \bar I \leqslant \bar S_{\prod}$. Поскольку, по условию,$\bar S_{\prod} -\underline S_{\prod} \rightarrow 0$ при $d\left (\prod\right ) \rightarrow 0$, то $\bar I = \underline I$. Обозначим их общее значение через $I$. Тогда получим, что для любого разбиения $\prod$ имеет место неравенство $\underline S_{\prod} \leqslant I \leqslant \bar S_{\prod}$. Но и каждая интегральная сумма $ \sigma$, отвечающая разбиению $\prod$, также удовлетворяет неравенству $ \underline S_{\prod} \leqslant \sigma \leqslant \bar S_{\prod}$. Отсюда следует, что $ \left | \sigma -I\right |\leqslant \bar S_{\prod} -\underline S_{\prod}$. Поскольку правая часть последнего неравенства стремится к нулю при $ d\left (\prod\right ) \rightarrow 0$, то получаем $$\lim_{d\left (\prod\right )\rightarrow 0} \sigma = I $$

Замечание. Из доказательства необходимости видно, что для интегрируемой функции ее верхняя и нижняя суммы Дарбу стремятся к интегралу от функции при стремлении к нулю диаметра разбиения.

Определение. Для ограниченной на отрезке $ [\alpha, \beta ] $ функции $ \varphi $ число $\omega = \sup \left | \varphi \left (x{}’\right ) — \varphi \left (x{}'{}’\right ) \right |,$ где $x{}’, x{}'{}’ \in [\alpha,\beta ]$, называется колебанием функции $ \varphi $ на $ [\alpha, \beta ]$.

Обозначим $ M_{i}=\underset{\displaystyle \alpha \leqslant x\leqslant \beta }{\sup} \varphi \left (x\right ) $ и $ m_{i} =\underset{\displaystyle \alpha \leqslant x\leqslant \beta }{\inf} \varphi \left (x\right )$. Тогда, как легко видеть, $\omega = M_{i} -m_{i}$
Пусть теперь ограниченная функция $f$ задана на отрезке $ [a,b]$. Тогда для произвольного разбиения $\prod $ колебание $ f $ на $ [x_{i},x_{i+1}] $ равно $\omega = M_{i}- m_{i}$. Поэтому $$\bar S_{\prod} -\underline S_{\prod} = \sum_{i=0}^{n-1}\left (M_{i} -m_{i}\right )\Delta x = \sum_{i=0}^{n-1}\omega _{i}\Delta x.$$

Таким образом, равносильная формулировка критерия интегрируемости примет следующий вид.

Теорема (критерий интегрируемости в терминах колебаний).
Для того чтобы ограниченная функция $ f $ была интегрируемой по Риману на отрезке $[a,b]$, необходимо и достаточно, чтобы было выполнено равенство$$\lim_{d\left (\prod\right )\rightarrow 0} \sum_{i=0}^{n-1} \omega_{i}\Delta x_{i} = 0,$$ где $ \omega _{i} $ — колебание функции $ f $на отрезке $ [x_{i}, x_{i=1}]$.

Пример решения задачи

Дан интеграл $I=\int\limits_{0}^{1}\sqrt{1+x^{5}}dx$. Выполнить равномерное разбиение на отрезке $\left [ 0, 1 \right ]$ на 6 частей. Построить верхнюю и нижнюю суммы Дарбу.

Решение


График функции $ f\left (x\right )=\sqrt{1+x^{5}}$.

Докажем, что функция монотонна.
Для этого возьмем производную данной функции
$\displaystyle f{}’\left (x\right )=\frac{\displaystyle 5x^{4}}{\displaystyle 2\sqrt{1+x^{5}}}$. Так как мы рассматриваем промежуток $\left ( 0, 1 \right )$, то на этом участке $x^{5} > 0$, $x^{4} > 0$ (так как степень четная ). Получили, что $ f{}’\left (x\right ) > 0$. Следовательно, $ f\left (x \right ) $ монотонно возрастает, тогда $\underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (x\right )$
расположен на правом конце, а $\underset{\displaystyle x_{i} \leqslant x \leqslant x_{i+1}}{\inf} f\left (x\right )$- на левом конце.
Построим верхнюю сумму Дарбу:
Найдем значения с точностью 0,001
$$ \bar S_{\prod} =\sum_{i=0}^{n-1} M_{i} \Delta x_{i}$$
$M_{1}=\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (\frac{\displaystyle 1}{\displaystyle 6}\right )$ $\approx 1;$
$M_{2}= \displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (\frac{\displaystyle 2}{\displaystyle 6}\right )$ $\approx 1,002;$
$M_{3}=\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (\frac{\displaystyle 3}{\displaystyle 6}\right )$ $\approx 1,015;$
$M_{4}= \displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (\frac{\displaystyle 4}{\displaystyle 6}\right )$ $\approx 1,064;$
$M_{5}=\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (\frac{\displaystyle 5}{\displaystyle 6}\right )$ $\approx 1,184;$
$M_{6}=\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\sup} f\left (1\right )$ $\approx 1,414;$
$$ \bar S_{\prod} =\left (1+1,002+1,015+1,064+1,184+1,414\right )\cdot \frac{\displaystyle 1}{\displaystyle 6} = 1.113;$$

Построим нижнюю сумму Дарбу:
Найдем значения с точностью 0,001
$$\underline S_{\prod} =\sum_{i=0}^{n-1} m_{i} \Delta x_{i} $$
$m_{1}$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (0\right ) = 1;$
$m_{2}$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (\frac{\displaystyle 1}{\displaystyle 6}\right )$ $\approx 1;$
$m_{3}$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (\frac{\displaystyle 2}{\displaystyle 6}\right )$ $\approx 1,002;$
$m_{4}$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (\frac{\displaystyle 3}{\displaystyle 6}\right )$ $\approx 1,015;$
$m_{5}$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (\frac{\displaystyle 4}{\displaystyle 6}\right )$ $\approx 1,064;$
$m_{6}$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (x\right )$=$\displaystyle \underset{\displaystyle x_{i}\leqslant x \leqslant x_{i+1}}{\inf} f\left (\frac{\displaystyle 5}{\displaystyle 6}\right )$ $\approx 1,184;$
$$ \underline S_{\prod} =\left (1+1+1,002+1,015+1,064+1,184\right )\cdot \frac{\displaystyle 1}{\displaystyle 6} = 1.044;$$

$f\left (0\right )=\sqrt{1+0}=\sqrt{1}=1;$
$f \left (\frac{\displaystyle 1}{\displaystyle 6} \right )=\sqrt{1+ \left (\frac{\displaystyle 1}{\displaystyle 6}\right ) ^{5}}=\sqrt{1.0001286008} \approx 1;$
$f \left (\frac{\displaystyle 2}{\displaystyle 6} \right )=\sqrt{1+ \left (\frac{\displaystyle 1}{\displaystyle 6}\right ) ^{5}}=\sqrt{1.00411} \approx 1.002;$
$f \left (\frac{\displaystyle 3}{\displaystyle 6} \right )=\sqrt{1+\left (\frac{\displaystyle 3}{\displaystyle 6}\right ) ^{5}}=\sqrt{1.03125} \approx 1.015;$
$f \left (\frac{\displaystyle 4}{\displaystyle 6} \right )=\sqrt{1+\left (\frac{\displaystyle 4}{\displaystyle 6}\right ) ^{5}}=\sqrt{1.1316872428} \approx 1.064;$
$f\left (\frac{\displaystyle 5}{\displaystyle 6} \right )=\sqrt{1+\left (\frac{\displaystyle 1}{\displaystyle 6}\right ) ^{5}}=\sqrt{1.401877572} \approx 1.184;$
$f \left (1\right )=\sqrt{1+1^{5}}=\sqrt{2} \approx 1.414;$

Информацию по теме «Суммы Дарбу и интегралы Дарбу» вы можете также найти в следующих учебниках:
  1. П. Д. Кудрявцев «Курс математического анализа», т.1. — М.: Дрофа, 2003, параграф 25 (cтр. стр. 551- 555 ).
  2. А. М. Тер-Крикоров, М. И. Шабунин «Курс математического анализа»- М.: ФИЗМАТ-ЛИТ, 2003, параграф 34 (стр. 319 — 324)

Суммы Дарбу и интегралы Дарбу

Тестовые вопросы по вышеизложенному материалу.


Таблица лучших: Суммы Дарбу и интегралы Дарбу

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

6.2 Интегрирование по частям и замена переменной

Теорема (формула интегрирования по частям).
Пусть функции $u(x)$ и $v(x)$ дифференцируемы на интервале $I$. Если одна из функций $u(x)v'(x)$ или $u'(x)v(x)$ имеет первообразную на интервале $I$, то на этом интервале имеет первообразную и другая функция, причем справедливо равенство $$\begin{equation}\label{eq:exp1}\int u(x)v'(x)dx=u(x)v(x)-\int u'(x)v(x)dx\end{equation}.$$

Доказательство сразу следует из правила дифференцирования произведения. Действительно, пусть $u(x)v'(x)$ имеет первообразную. Тогда, по правилу дифференцирования произведения, имеем $$[u(x)v(x)]’=u'(x)v(x)+u(x)v'(x).$$
Отсюда получаем, что $u'(x)v(x)$ является разностью двух производных функций, т. е. разностью двух функций, имеющих первообразные. Поэтому она сама также является производной, т. е. имеет первообразную, и справедливо равенство $\eqref{eq:exp1}$.

Замечание 1.
Коротко правило интегрирования по частям может быть записано так:
$$\int udv=uv-\int vdu.$$
Действительно, в этой записи используется формула для вычисления дифференциала функции $du(x)=u'(x)dx$.

Замечание 2.
Если одна из функций дифференцируема, а другая имеет первообразную, то их произведение (производной на функцию, имеющую первообразную) не обязано иметь первообразную. Такой пример приводится сразу после этого замечания. Поэтому в формулировке теоремы нужно предполагать наличие первообразной у одной из функций $u'(x)v(x)$ или $u(x)v'(x)$.

Утверждение.
Существуют дифференцируемая функция $u$ и имеющая первообразную функция $v$, такие, что $u’v$ не имеет первообразной.

Достаточно показать, что квадрат функции, имеющей первообразную, может не иметь первообразной.
Положим $f(x)=|x|^\alpha \sin\displaystyle\frac{1}{x}$, $x\neq0$, $f(0)=0$. При $\alpha>1$ функция $f$ дифференцируема на $\mathbb{R}$ и ее производная равна
$$\begin{equation*}f'(x) = \begin{cases}\alpha|x|^{\alpha-1}\sin\displaystyle\frac{1}{|x|}-|x|^{\alpha-2}\cos\displaystyle\frac{1}{x},\;  x\neq0, \\ 0,\;  x=0. \end{cases}\end{equation*}$$
Поскольку функция $\alpha|x|^{\alpha-1}\sin\displaystyle\frac{1}{x}\equiv\varphi(x) (x\neq0)$, $\varphi(0) = 0$ непрерывна на $\mathbb{R}$, а значит, имеет первообразную на $\mathbb{R}$, то функция
$$v(x)\equiv|x|^{\alpha-2}\cos\displaystyle\frac{1}{x}=\varphi(x)-f'(x) (x\neq0),\;\; v(0) = 0,$$
имеет первообразную на $\mathbb{R}$ как разность двух функций — $\varphi(x)$ и $f'(x)$, имеющих первообразные на $\mathbb{R}$.
Покажем, что при надлежащем выборе числа $\alpha>1$ функция $v^2(x)$ не имеет первообразной на $\mathbb{R}$. Предположим противное. Пусть существует такая дифференцируемая на $\mathbb{R}$ функция $F$, что для всех $x\in \mathbb{R}$ справедливо равенство
$$F'(x)=v^2(x)=|x|^{2(\alpha-2)}\cos^2\displaystyle\frac{1}{x},\;\; (x\neq0),\;\; F'(0)=0.$$
Для $k = 1, 2, \ldots$ обозначим
$$[a_k, b_k] = \left[\displaystyle\frac{4}{(4k+1)\pi}, \displaystyle\frac{4}{(4k-1)\pi}\right].$$
Если $x\in[a_k, b_k]$, то
$$\displaystyle\frac{1}{x}\in\left[\displaystyle\frac{(4k-1)\pi}{4}, \displaystyle\frac{(4k+1)\pi}{4}\right], \\ \displaystyle\frac{2}{x}\in\left[\displaystyle\frac{(4k-1)\pi}{4}, \displaystyle\frac{(4k+1)\pi}{4}\right]=\left[2k\pi-\displaystyle\frac{\pi}{2}, 2k\pi+\displaystyle\frac{\pi}{2}\right].$$
Поэтому для $x\in[a_k, b_k]$ имеем
$$\cos^2\displaystyle\frac{1}{x}=\displaystyle\frac{1+\cos\displaystyle\frac{2}{x}}{2}\geqslant\displaystyle\frac{1}{2},$$
так что $F'(x)\geqslant\displaystyle\frac{1}{2}x^{2(\alpha-2)}, x\in[A_k, b_k]$. По теореме Лагранжа получим
$$F(b_k)-F(a_k)=F'(\xi_k)(b_k-a_k)\geqslant\displaystyle\frac{1}{2}\xi^{2(\alpha-2)}_k(b_k-a_k)\geqslant\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k,$$
где $\xi_k\in[a_k, b_k]$, а число $\alpha>1$ будет выбрано так, что $\alpha<2$. Отсюда получим
$$F(a_k)\leqslant F(b_k)-\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k.$$
Заметим, что отрезки $[a_k, b_k]$ попарно не пересекаются и, так как $F'(x)\geqslant0$, то функция $F$ не убывает. Значит,
$$F(b_{k+1})\leqslant F(a_k)\leqslant F(b_k)-\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k.$$
Отсюда следует, что
$$\begin{equation}\label{eq:exp2}F(b_{k+1})\leqslant F(b_1)-\displaystyle\frac{1}{2}\sum^{k}_{s=1}(b_s-a_s)b^{2(\alpha-2)}_s.\end{equation}$$
Оценим последнюю сумму справа. Имеем
$$b_s-a_s=\displaystyle\frac{8}{\pi}\displaystyle\frac{1}{(4s+1)(4s-1)},$$
так что
$$\sum^{k}_{s=1}(b_s-a_s)b^{2(\alpha-2)}_s=\\=c_s\sum^{k}_{s=1}\displaystyle\frac{1}{(4s+1)(4s-1)}\left(\displaystyle\frac{1}{4s-1}\right)^{2(\alpha-2)}\geqslant c’_s\sum^{k}_{s=1}\displaystyle\frac{1}{s^{2\alpha-2}}.$$
Если $2\alpha-2\leqslant1$, т. е. $\alpha\leqslant\displaystyle\frac{3}{2}$, то $\sum\limits^k_{s=1}\displaystyle\frac{1}{s^{2\alpha-2}}\rightarrow\infty(k\rightarrow\infty)$. Поэтому из $\eqref{eq:exp2}$ следует, что $F(b_{k+1})\rightarrow-\infty$ при $k\rightarrow\infty$. Но поскольку $b_{k+1}\rightarrow+0 (k\rightarrow\infty)$, то это противоречит непрерывности функции $F$ в точке $x_0=0$ справа, которая вытекает из дифференцируемости функции $F$ в нуле.

Пример 1.
$\int x e^x dx=\begin{bmatrix}u=x, & dv=e^x dx\\du=dx, & v=e^x\end{bmatrix}=x e^x-\int e^x dx=x e^x-e^x+C.$

Пример 2. 
$\int x\cos x dx=\begin{bmatrix}u=x, & dv=\cos x dx\\du=dx, & v=\sin x\end{bmatrix}=\\=x\sin x-\int\sin x dx=x\sin x+\cos x+C.$

Пример 3. 
$\int x\ln x dx=\begin{bmatrix}u=\ln x, & dv=x dx\\du=\displaystyle\frac{dx}{x}, & v=\displaystyle\frac{x^2}{2}\end{bmatrix}=\\=\displaystyle\frac{x^2}{2}\ln x-\displaystyle\frac{1}{2}\int x dx=\displaystyle\frac{x^2}{2}\ln x-\displaystyle\frac{x^2}{4}+C.$

Следующий пример показывает такой способ применения формулы интегрирования по частям, когда в правой части появляется такой же интеграл, как и в левой части. Тогда искомый интеграл может быть найден из полученного равенства.

Пример 4. 
$\int e^x\cos xdx=\begin{bmatrix}u=e^x, & dv=\cos xdx\\du=e^x dx, & v=\sin x\end{bmatrix}=\\=e^x\sin x-\int e^x\sin xdx=e^x\sin x-\begin{bmatrix}u=e^x, & dv=\sin xdx\\du=e^x dx, & v=-\cos x\end{bmatrix}=\\=e^x\sin x+e^x\cos x-\int e^x\cos xdx.$
Из этого равенства находим
$$\int e^x\cos xdx=\displaystyle\frac{e^x}{2}[\sin x+\cos x] + C.$$

Теорема (о замене переменной в интеграле). Пусть функция $f$ имеет первообразную на интервале $I$, т. е.
$$\int f(t)dt=F(t)+C.$$
Пусть, далее, функция $\varphi$ дифференцируема на интервале $\Delta$ и $\varphi(\Delta)\subset I$. Тогда справедливо равенство
$$\int f(\varphi(x))\varphi'(x)dx=F(\varphi(x))+C.$$

Действительно, по правилу дифференцирования сложной функции имеем
$$[F(\varphi(x))]’=F'(\varphi(x))\varphi'(x)=f(\varphi(x))\varphi'(x).$$

Пример 1. $\int\sin^3 xdx=\int\sin x(1-\cos^2 x)dx=[\cos x = t, dt =-\sin xdx]=\\=\int(t^2-1)dt=\displaystyle\frac{t^3}{3}-t+C=\displaystyle\frac{\cos^3 x}{3}-\cos x+C.$

Пример 2. $\int\displaystyle\frac{dx}{1+e^x}=\begin{bmatrix}\text{преобразуем} & \displaystyle\frac{1}{1+e^x}=\displaystyle\frac{1}{e^x(e^-x+1)}=\displaystyle\frac{e^{-x}}{1+e^{-x}}\\ \text{положим} & 1+e^{-x}=t, dt=-e^{-x}dx\end{bmatrix}=-\int\displaystyle\frac{dt}{t}=\\=-\ln|t|+C=-\ln(1+e^{-x})+C=-\ln\displaystyle\frac{1+e^x}{e^x}+C=x-\ln(1+e^x)+C.$

Замечание. Мы использовали равенство $\int\displaystyle\frac{dx}{x}=\ln|x|+C$. Это равенство следует применять отдельно для промежутков $(0, +\infty)$ и $(-\infty, 0)$.
При $x>0$ оно справедливо по той причине, что $|x|=x,$ $(\ln x+C)’=\displaystyle\frac{1}{x}$.
Если же $x<0$, то $|x|=-x$, $\ln(-x)+C)’=\displaystyle\frac{1}{-x}\cdot(-1)=\displaystyle\frac{1}{x}$, так что и в этом случае равенство верно.

Итак, если исходный интеграл представлен в виде $\int f(\varphi(x))\varphi'(x)dx$, то, выполняя замену переменной $t=\varphi(x)$, мы приходим к интегралу $\int f(t)dt$. Часто замену переменной в интеграле $\int g(x)dx$ применяют в виде $x = \psi(t)$, затем вычисляют интеграл по $t$, а чтобы вернуться к старой переменной $x$, нужно выразить новую переменную $t$ через $x$.

Пример. Пусть $I=\int\sqrt{1-x^2}dx$.
Для вычисления этого интеграла положим $x=\sin t$. Тогда
$$dx=\cos tdt, \sqrt{1-x^2}=\sqrt{1-\sin^2 t}=\sqrt{\cos^2 t}=\cos t.$$
Подставляя это в исходный интеграл, получаем
$$I=\int\cos^2 tdt=\int\displaystyle\frac{1+\cos 2t}{2}dt=\displaystyle\frac{t}{2}+\displaystyle\frac{\sin 2t}{4}+C.$$
Из равенства $x=\sin t$ имеем $t=\arcsin x$, так что
$$I=\displaystyle\frac{\arcsin x}{2}+\displaystyle\frac{x\sqrt{1-x^2}}{2}+C.$$
Вычислим этот интеграл еще одним способом, основанным на применении формулы интегрирования по частям.
$$I=\int\sqrt{1-x^2}dx=\begin{bmatrix}u=\sqrt{1-x^2}, & dv=dx\\du=-\displaystyle\frac{x}{\sqrt{1-x^2}}dx, & v=x\end{bmatrix}=\\=x\sqrt{1-x^2}+\int\displaystyle\frac{x^2}{\sqrt{1-x^2}}dx=\\=x\sqrt{1-x^2}+\int\displaystyle\frac{x^2-1+1}{\sqrt{1-x^2}}dx=x\sqrt{1-x^2}-I+\int\displaystyle\frac{dx}{\sqrt{1-x^2}}.$$
Воспользовавшись теперь равенством $\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x+c$, вытекающим из того, что $(\arcsin x+C)’=\displaystyle\frac{1}{\sqrt{1-x^2}}$, получим $I=x\sqrt{1-x^2}-I+\arcsin x$. Отсюда следует
$$I=\displaystyle\frac{1}{2}[x\sqrt{1-x^2}+\arcsin x]+C.$$

Решение примеров

Интегрирование по частям:

  1. $\int\text{arctg}\:xdx$
    Решение

    $\int\text{arctg}\:xdx=\begin{bmatrix}\text{arctg}\:{x}=u, du=\displaystyle\frac{dx}{1+x^2}\\dx=dv, v=x\end{bmatrix}=x\:\text{arctg}\: {x}-\int\displaystyle\frac{xdx}{1+x^2}=\\=x\:\text{arctg}\: {x}-\displaystyle\frac{1}{2}\int\displaystyle\frac{dx^2}{1+x^2}=x\:\text{arctg}\: {x}-\displaystyle\frac{1}{2}\ln(1 + x^2) + C.$

  2. $\int x\sin{x}dx$
    Решение

    $\int x\sin{x}dx=\begin{bmatrix}x=u, du=dx\\ \sin{x}=dv, v=-\cos{x}\end{bmatrix}=-x\cos{x}+\int\cos{x}dx=\\=-x\cos{x}+\sin{x}+C.$

  3. $\int xe^{x}dx$
    Решение

    $\int xe^{x}dx=\begin{bmatrix}u=x, du=dx\\dv=e^{x}dx, v=e^x\end{bmatrix}=xe^x-\int e^{x}dx=xe^x-e^x+C.$

Замена переменной:

  1. $\int\displaystyle\frac{dx}{\sqrt{e^x-1}}$
    Решение

    $\int\displaystyle\frac{dx}{\sqrt{e^x-1}}=\begin{bmatrix}\sqrt{e^x-1}=t, x=\ln(t^2+1)\\dx=\displaystyle\frac{2tdt}{t^2+1}\end{bmatrix}=2\int\displaystyle\frac{tdt}{t(t^2+1)}=\\=2\int\frac{dt}{t^2+1}=2\: \text{arctg}\: t+C.$

  2. $\int\displaystyle\frac{x^{2}dx}{5-x^6}$
    Решение

    $\int\frac{x^2dx}{5-x^6}=\begin{bmatrix}x^3=t\\dt=3x^2dx\\x^6=t^2\end{bmatrix}=\frac{1}{3}\int\frac{dt}{5-t^2}=\frac{1}{3}\int\frac{dt}{(\sqrt{5})^2-t^2}=\\=\frac{1}{6\sqrt{5}}\ln\left|\frac{\sqrt{5}+t}{\sqrt{5}-t}\right|+C=[t=x^3]=\frac{1}{6\sqrt{5}}\ln\left|\frac{\sqrt{5}+x^3}{\sqrt{5}-x^3}\right|+C.$

Интегрирование по частям и замена переменной

Пройдя этот тест, вы закрепите пройденный ранее материал по теме «Интегрирование по частям и замена переменной»

Таблица лучших: Интегрирование по частям и замена переменной

максимум из 18 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
Литература

Смотрите также

  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр.23, 31)
  2. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001  (стр. 277, 281)
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр. 461, 464)

5.7.1. Формула Тейлора с остатком в форме Пеано

Пусть функция $f$ определена на интервале $(a, b)$. Предположим, что в каждой точке $x \in \left(a,b\right)$ у функции $f$ существует производная $f^{\prime}\left(x\right)$. Если функция $f^\prime$ в некоторой точке $x_{0} \in \left(a, b \right)$ имеет производную, то ее называют второй производной функции $f$ в точке $x_{0}$ и обозначают $f^{\prime \prime}\left(x_0\right)$. По индукции определяются и производные высших порядков. Именно, $f^{\left(k\right)}\left(x\right)=f^{\left(k-1\right)^{\prime}}\left(x\right)$

Определение: Для $k \in \usepackage{amsfonts} \mathbb {N}$ и отрезка $\left[a, b\right]$ через $C^{k}\left(\left[a, b\right]\right)$ обозначается совокупность всех функций $f$, определенных на $\left[a, b\right]$ и таких, что $k$-я производная $f^{\left(k\right)}$ непрерывна на $\left[a, b\right]$. При этом в точках $a$ и $b$ производные понимаются как односторонние.

Напомним определение дифференцируемости. Дифференцируемой в точке $x_{0}$ мы называли такую функцию $f$, что в окрестности точки $x_{0}$ она представима в виде
$$f\left(x\right) = f \left(x_0\right) + f^{\prime}\left(x_0\right)\left(x − x_{0}\right) + \left(x \to x_{0}\right) \bar{o}\left(\left(x − x_{0}\right)^n\right) \left(x \to x_{0}\right) $$
т.е. $f\left(x\right) = P_{1}\left(x\right) + \bar{o}\left(x − x_{0}\right)$, где $P_{1}\left(x\right)$ – многочлен первого порядка, а остаток $\bar{o}\left(x − x_{0}\right)$ мал по порядку по сравнению с $x − x_{0}$.

Поставим следующую задачу. Пусть функция $f$ определена в некоторой окрестности точки $x_{0}$. Можно ли функцию $f$ в этой окрестности представить в виде суммы многочлена $P_{n}\left(x\right)$ степени не выше заданного натурального $n$, и остатка $r_{n}\left(x\right)$, малого по сравнению с $\left(x − x_{0}\right)^n$, т.е. $r_{n}\left(x\right) = \bar{o}\left(\left(x − x_{0}\right)^{n}\right)\left(x \to x_{0}\right)$? Другими словами, мы хотим, чтобы имело место равенство
$$f\left(x\right) = P_{n}\left(x\right) + \bar{o}\left(\left(x − x_{0}\right)^n\right)\left(x \to x_{0}\right).$$
При $n = 1$ это возможно, если функция $f$ дифференцируема в точке $x_{0}$. Это сразу следует из определения дифференцируемости.

Лемма: Пусть функция $ \varphi $ определена на интервале $I$ и всюду на этом интервале имеет производную до порядка $n − 1$ включительно, а в точке $x_{0} \in I$ имеет производную $ \varphi^{\left(n\right)}\left(x_{0}\right)$, причем $$ \varphi\left(x_{0}\right) = \varphi^{\prime}\left(x_{0}\right)=\ldots=\varphi^{\left(n\right)}\left(x_{0}\right) = 0.$$ Тогда $ \varphi\left(x\right) = \bar{o}\left(\left(x − x_{0}\right)^{n}\right)\left(x \to x_{0}\right)$

Применим индукцию по $n$. При $n = 1$ из дифференцируемости $\varphi$ в точке $x_{0} \in I$ получаем $$ \varphi\left(x\right) = \varphi \left(x_{0}\right) + \varphi^{\prime}\left(x_{0}\right)\left(x − x_{0}\right) + \bar{o}\left(x − x_{0}\right),$$ а из условия леммы $ \varphi\left(x_{0}\right) = \varphi^{\prime}\left(x_{0}\right) = 0 $ следует, что $\varphi \left(x\right) = \bar{o}\left(x − x_{0}\right).$
Предположим, что лемма верна для некоторого натурального $n$, и покажем, что она справедлива и для $n + 1$. Итак, согласно предположению индукции, $\varphi\left(x\right) = \underset{\left(x \to x_{0}\right)}{\bar{o}\left(\left(x − x_{0}\right)^n\right)}$ и $\varphi^{\left(n+1\right)} \left(x_{0}\right) = 0$. Тогда, по теореме Лагранжа, $\varphi\left(x\right) − \varphi \left(x_{0}\right) = \varphi^{\prime}\left(\xi\right)\left(x − x_{0}\right)$, где точка $\xi$ находится между $x$ и $x_{0}$. Обозначим $\psi \left(x\right) = \varphi^{\prime}\left(x\right)$. Тогда, по предположению индукции, $ \psi\left(x_{0}\right) = \psi^{\prime}\left(x_{0}\right)=\ldots=\psi^{\left(n\right)}\left(x_{0}\right) = 0$ и $\psi^{\left(n\right)}\left(x\right)=\underset{\left(x\to x_{0}\right)}{\bar{o}\left(\left(x− x_{0}\right)^n\right)}$. Поэтому $$ \frac{\lvert \varphi\left(x\right) \rvert}{\lvert x-x_{0} \rvert ^{n+1}} = \frac {\lvert \varphi ^{\prime} \left(\xi\right) \rvert}{\lvert x-x_{0} \rvert ^{n}} \leqslant \frac{\lvert \psi \left(\xi\right) \rvert}{\lvert \xi-x_{0} \rvert ^{n}} \to 0 \mbox{ при } x \to x_{0}. $$ Это следует из предположения индукции и из того, что $\xi $ находится между $x$ и $x_{0}$. Таким образом, получили, что $\varphi\left(x\right) = \bar{o}\left(\left(x − x_{0}\right)^{n+1}\right)$.

Вернемся к нашей задаче представления функции $f$ в виде $$f\left(x\right) = P_{n}\left(x\right)+\bar{o}\left(\left(x-x_{0}\right)^n\right).$$ Из доказанной леммы сразу следует, что если мы найдем многочлен $P_{n}\left(x\right)$, такой, что $P_{n}\left(x_{0}\right) = f\left(x_{0}\right)$, $P_{n}^{\prime}\left(x_{0}\right) = f^{\prime}\left(x_{0}\right)$, $\ldots$, $P_{n}^{\left(n\right)}\left(x_{0}\right) = f^{\left(n\right)}\left(x_{0}\right)$, то функция $\varphi\left(x\right) = f\left(x\right) − P_{n}\left(x\right)$ будет удовлетворять условиям $\varphi\left(x_{0}\right) =\varphi^{\prime}\left(x_{0}\right) = \ldots = \varphi^{\left(n\right)}\left(x_{0}\right) = 0$, и, в силу леммы, $\varphi\left(x\right) = \bar{o} \left(\left(x − x_{0}\right)^n\right)$, т.е. наша задача будет решена, если мы найдем многочлен $P_{n}\left(x\right)$.

Многочлен $P_{n}\left(x\right)$ будем искать в виде $$P_{n}\left(x\right) = c_0 + c_{1}\left(x-x_{0}\right) + \ldots + c_{n}\left(x-x_{0}\right)^n,$$ т.е. по степеням $x − x_{0}$, где $c_0, c_1, \ldots, c_n$ – коэффициенты. Найдем производные многочлена $P_n$. Имеем

$ P_n \left(x_0\right) = c_0, {} \\ {} P_n^{\prime}\left(x\right) = c_1 + 2 \cdot c_2 \left(x-x_0\right)+\ldots+n\cdot c_n\left(x- x_0\right)^{n-1}, {} \\ {} P_n^{\prime}\left(x_0\right) = c_1, {} \\ {} P_n^{\prime \prime}\left(x\right) = 2\cdot c_2 + 3\cdot2\cdot c_3\left(x-x_0\right)+\ldots+n \cdot \left(n-1\right)\cdot c_n\left(x-x_0\right)^{n-2}, {} \\ {} P_n^{\prime \prime}\left(x_0\right)=2c_2, {} \\ {} \cdots {} \\ {} P_n^{\left(k\right)}\left(x\right) = k\cdot\left(k-1\right)\cdot \ldots \cdot 2 \cdot 1\cdot c_k + \left(k+1\right) \cdot\ldots \cdot2 \cdot 1\cdot c_{k+1}\left(x-x_0\right)+\ldots +{} \\ {}+ n\cdot\left(n-1\right)\cdot\ldots\cdot \left(n-k+1\right)\cdot c_n\left(x-x_0\right)^{k}, {} \\ {} \cdots \\ {} P_n^{\left(k\right)}\left(x_0\right) = k!\cdot c_k \left(k=0,1,\ldots,n\right).$

Таким образом, $P_n^{\left(k\right)}\left(x_0\right) = k!\cdot c_k$, откуда $c_k = \frac{\displaystyle P_n^{\left(k\right)}\left(x_0\right)}{\displaystyle k!}$. Итак, если мы хотим, чтобы при всех $k=0,1,\ldots,n$ были выполнены равенства $f^{\left(k\right)}\left(x_0\right)=P_n^{\left(k\right)}\left(x_0\right)$, то коэффициенты $c_k$ многочлена $P_n\left(x\right)$ должны быть равными $c_k = \frac {\displaystyle f^{\left(k\right)}\left(x_0\right)}{\displaystyle k!} \left(k = 0,1,\ldots,n\right)$, т.е. $$P_n\left(x\right) = f\left(x_0\right) + \frac {f^{\prime}\left(x_0\right)}{1!}\left(x-x_0\right) + \ldots + \frac {f^{\left(n\right)}\left(x_0\right)}{n!}\left(x-x_0\right)^n.$$ В этом случае функция $\varphi \left(x\right) = f\left(x\right) — P_n\left(x\right)$ удовлетворяет условиям леммы и, следовательно, $\varphi \left(x\right) = \bar{o}\left(\left(x-x_0\right)^n\right)$, т.е. мы получим нужное представление $$ f\left(x\right) = P_n\left(x\right) + \bar{o}\left(\left(x-x_0\right)^n\right).$$

Итак, мы доказали следующую теорему.

Теорема: Пусть функция $f$ определена в некоторой окрестности $I$ точки $x_0$ и имеет в этой окрестности производные до $(n − 1)$-го порядка включительно, а в точке $x_0$ имеет производную $n$-го порядка. Тогда справедливо равенство $$ f\left(x\right) = f\left(x_0\right)+\frac {f^{\prime}\left(x_0\right)}{1!}\left(x-x_0\right) + \frac {f^{\prime \prime}\left(x_0\right)}{2!}\left(x-x_0\right)^2 + \ldots +{} \\ {}+ \frac {f^{\left(n\right)}\left(x_0\right)}{n!}\left(x-x_0\right)^n + \bar{o}\left(\left(x-x_0\right)^n\right) \text{ при } x \to x_0.$$

Доказанное в этой теореме равенство называется формулой Тейлора с остатком в форме Пеано. Многочлен $$ P_n\left(x\right) = f\left(x_0\right)+\frac {f^{\prime}\left(x_0\right)}{1!}\left(x-x_0\right) + \frac {f^{\prime \prime}\left(x_0\right)}{2!}\left(x-x_0\right)^2 + \ldots +{} \\ {}+ \frac {f^{\left(n\right)}\left(x_0\right)}{n!}\left(x-x_0\right)^n $$ называется многочленом Тейлора функции $f$ с центром в точке $x_0$, а последнее слагаемое в формуле Тейлора $\bar{o}\left(\left(x − x_0\right)^n\right)$ — остатком формулы Тейлора в форме Пеано.

Докажем единственность многочлена Тейлора. Предположим, что существует два представления – $f\left(x\right) = P_n\left(x\right) + \bar{o}\left(\left(x-x_0\right)^n\right)$ и $f\left(x\right) = Q_n\left(x\right) + \bar{o}\left(\left(x-x_0\right)^n\right)$, где $P_n$ и $Q_n$ – многочлены степени не выше, чем $n$. Покажем, что $P_n \equiv Q_n$, т.е. коэффициенты многочленов $P_n$ и $Q_n$ совпадают. Имеем $P_n\left(x\right)-Q_n\left(x\right) = \bar{o}\left(\left(x-x_0\right)^n\right)$, т.е. $R_n\left(x\right) \equiv P_n\left(x\right)-Q_n\left(x\right) = \bar{o}\left(\left(x-x_0\right)^n\right)$, где степень $R_n$ не превосходит $n$. Покажем, что все коэффициенты $b_k$ многочлена $R_n\left(x\right) \equiv b_0 + b_1 \left(x-x_0\right) + \ldots +b_n\left(x-x_0\right)^n$ равны нулю. Из равенства $$b_0 + b_1 \left(x-x_0\right) + \ldots +b_n\left(x-x_0\right)^n = \bar{o}\left(\left(x-x_0\right)^n\right),$$ устремляя $x \to x_0$ и учитывая, что правая часть стремится к нулю, получаем, что $b_0 = 0$. Следовательно, $$b_1 \left(x-x_0\right) + \ldots +b_n\left(x-x_0\right)^n = \bar{o}\left(\left(x-x_0\right)^n\right).$$ Разделив это равенство на $x − x_0$, получим $$ b_1 + b_2 \left(x-x_0\right) + \ldots +b_n\left(x-x_0\right)^{n-1} = \bar{o}\left(\left(x-x_0\right)^{n-1}\right),$$ откуда, устремляя $x \to x_0$, получим, что $b_1 = 0$. Продолжая этот процесс, получим, что $b_0 = b_1 = \ldots = b_n = 0$, т.е. $R_n = 0$, что и требовалось.

Замечание: Если функция $f$ является многочленом степени $n$, то она совпадает со своим многочленом Тейлора порядка $n$ и выше. В самом деле, если $f\left(x\right) = P_n\left(x\right)$, то для $n \leqslant m$ будем иметь $$f\left(x\right) = P_n\left(x\right) = P_m\left(x\right) + 0 = P_m\left(x\right) + r_m\left(x\right),$$ где $r_m\left(x\right) = 0 = \bar{o}\left(\left(x-x_0\right)^m\right) \left(x \to x_{0}\right)$. Значит, в силу единственности многочлена Тейлора, $P_m\left(x\right) \equiv P_n\left(x\right)$ – многочлен Тейлора.

Примеры решения задач

  1. Пусть $f\left(x\right) = x^2 − 3x + 1$. Требуется построить формулу Тейлора для функции $f$ порядка $n = 2$ в окрестности точки $x_0 = 1$.
    Решение

    Можно было бы вычислить $f\left(1\right), f^{\prime}\left(1\right), f^{\prime \prime}\left(1\right)$ и построить многочлен Тейлора согласно общей формуле $$ P_2\left(x\right) = f\left(1\right) + \frac {f^{\prime}\left(1\right)}{1!}\left(x-1\right) + \frac {f^{\prime \prime}\left(1\right)}{2!}\left(x-1\right)^2,$$ и тогда получили бы $$ f\left(x\right) = x^2 — 3x + 1 = f\left(1\right) + \frac {f^{\prime}\left(1\right)}{1!}\left(x-1\right) + \frac {f^{\prime \prime}\left(1\right)}{2!}\left(x-1\right)^2 + r_2\left(x\right), $$ где $r_2\left(x\right) = f\left(x\right) — P_2\left(x\right) = \bar{o}\left(\left(x-1\right)^2\right) \left(x \to 1\right)$. На самом деле оказывается, что $r_2\left(x\right) ≡ 0$. Действительно, данный пример можно решить проще, если многочлен $x^2−3x+1$ расписать по степеням $x−1$, а именно: $x^2−3x+1 = \left(\left(x-1\right) + 1\right)^2-3\left(\left(x-1\right)+1\right)+1 = $$ $$= -1-\left(x-1\right)+\left(x-1\right)^2 = P_2 \left(x\right).$ Справа мы получили многочлен по степеням $x−1$. Данная функция $x^2 − 3x + 1$ представляет собой многочлен. В силу единственности, это и есть многочлен Тейлора для функции в окрестности точки $x_0 = 1$.

  2. Построить формулу Тейлора для функции $f\left(x\right)=\sin x$ порядка $n = 3$ в окрестности точки $x_0 = \frac{\pi}{2}$.
    Решение

    Записываем формулу Тейлора по определению, вычисляя предварительно $f\left(\frac{\displaystyle \pi}{\displaystyle 2}\right), f^{\prime}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right), f^{\prime \prime}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right), f^{\left(3\right)}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right)$.
    $f\left(\frac{\displaystyle \pi}{\displaystyle 2}\right) = 1,$ $f^{\prime}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right) = \cos\frac{\displaystyle \pi}{\displaystyle 2} = 0,$ $f^{\prime \prime}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right) = -\sin\frac{\displaystyle \pi}{\displaystyle 2} = -1,$ $f^{\left(3\right)}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right) = -\cos\frac{\displaystyle \pi}{\displaystyle 2} = 0.$ С помощью полученных данных построим многочлен Тейлора третьего порядка $ P_3\left(x\right) = 1 + \frac {\displaystyle 0}{\displaystyle 1!}\left(x-\frac{\displaystyle \pi}{\displaystyle 2}\right) + \frac {\displaystyle -1}{\displaystyle 2!}\left(x-\frac{\displaystyle \pi}{\displaystyle 2}\right)^2 + \frac {\displaystyle 0}{\displaystyle 3!}\left(x-\frac{\displaystyle \pi}{\displaystyle 2}\right)^3.$ Тогда формула Тейлора будет выглядеть следующим образом: $$f\left(x\right) = 1-\frac{\displaystyle 1}{\displaystyle 2}\left(x-\frac{\displaystyle \pi}{\displaystyle 2}\right)^2 + \bar{o} \left(\left(x − x_{0}\right)^2\right).$$

  3. Вычислить предел $\lim\limits_{x\to 0}\frac{\displaystyle\sqrt{1+x}-e^x+x^2}{\displaystyle\sin x}$, используя формулу Тейлора.
    Решение

    Разложим выражения $\sqrt{1+2x}$, $e^x$ и $\sin x$ по формуле Тейлора в окрестности точки $x_0 = 0$ порядка $n=1$: $$\sqrt {1+x}=\left(1+x\right)^{\frac{1}{2}}=1+\frac{1}{2}x+\bar{o}\left(x\right);$$ $$ e^x=1+x+\bar{o}\left(x\right).$$
    Используя эти разложения и заменив в знаменателе функцию $\sin x$ на эквивалентную ей в окрестности точки $x_0=0$ функцию $x$, получаем из исходной дроби следующую: $$\frac{1+\frac{\displaystyle 1}{\displaystyle 2}x-1-x+\bar{o}\left(x\right)}{x+\bar{o}\left(x\right)}.$$
    Тогда в пределе получаем выражение
    $$\lim\limits_{x\to 0} \frac {-\frac{\displaystyle x}{\displaystyle 2}+\bar{o}\left(x\right)} {x+\bar{o}\left(x\right)}.$$ Если поделить почленно числитель и знаменатель дроби на $x$, то получим $$\lim\limits_{x\to 0} \frac {-\frac{\displaystyle 1}{\displaystyle 2}+\frac{\displaystyle \bar{o}\left(x\right)}{\displaystyle x}} {1+\frac{\displaystyle \bar{o}\left(x\right)}{\displaystyle x}}.$$ Выражения вида $\frac{\displaystyle \bar{o}\left(x\right)}{\displaystyle x}$ в пределе дадут $0$. Тогда в ответе получаем $\frac{-1}{2}.$

Тест

Пройдите тест, чтобы проверить свои знания о многочлене Тейлора и формуле Тейлора с остатком в форме Пеано.

См. также:

Преобразование Фурье (прямое и обратное)

1. Понятие преобразования Фурье и обратного преобразования Фурье. Пусть $f(x)$ есть комплекснозначная функция действительного переменного. Тогда преобразование Фурье функции $f(x)$ ( оно обозначается через $F[f]$ или $\hat{f}$) определяется формулой
$$\hat{f}(y)=F[f]=v.p.\intop_{-\infty}^{+\infty}f(x)e^{-iyx}dx\,(1)$$
Обратное преобразование Фурье(обозначается через $F^{-1}[f]$ или $\tilde{f}$) определяется формулой
$$\tilde{f}(y)=F^{-1}[f]=v.p.\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(x)e^{iyx}dx\,(2)$$
Предполагается, что интегралы (1) и (2) существуют. Если функция $f(x)$ абсолютно интегрируема, то несобственные интегралы $$\intop_{-\infty}^{+\infty}f(x)e^{-iyx}dx$$$$\intop_{-\infty}^{+\infty}f(x)e^{iyx}dx$$ существуют и совпадают с соответствующими интегралами в смысле главного значения. Поэтому для абсолютно интегрируемых функций преобразование Фурье и обратное преобразование Фурье определяется как следующие несобственные интегралы:
$$F[f]=\intop_{-\infty}^{+\infty}f(x)e^{-iyx}dx$$
$$F^{-1}[f]=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(x)e^{iyx}dx$$

2. Свойства преобразования Фурье абсолютно интегрируемых на $\mathbb{R}$ функций.

Лемма 1. Преобразование Фурье абсолютно интегрируемой на $\mathbb{R}$ функции есть ограниченная и непрерывная на $\mathbb{R}$ функция.

Так как функция $f(x)$ абсолютно интегрируема на $\mathbb{R}$, то
$$\left|\hat{f}(y)\right|=\left|\intop_{-\infty}^{+\infty}f(x)e^{iyx}dx \right| \leq\intop_{-\infty}^{+\infty} \left| f(x)\right|dx= C_{0}$$ Cледовательно, $\hat{f}(y)$ есть ограниченная функция на $\mathbb{R}$. Для доказательства непрерывности функции $\hat{f}(y)$ запишем её в виде

$$\hat{f}(y)=\intop_{-\infty}^{+\infty}f(x)\cos{(yx)}dx$$ $$-i\intop_{-\infty}^{+\infty}f(x)\sin{(yx)}dx=$$ $$a(y)-ib(y)$$

и заметим, что, в силу леммы, функции $a(y)$ и $b(y)$ непрерывны на $\mathbb{R}$.

Теорема 1. Если функция $f(x)$ абсолютно интегрируема на $\mathbb{R}$ и имеет в каждой точке конечную производную $f'(x)$, то справедливы формулы обращения

$$F^{-1}\left[F\left[f\right]\right]=f,$$ $$F\left[F^{-1}\left[f\right]\right]=f \,(5)$$

Так как выполнены условия теоремы, то справедливо равенство

$$f(x)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}dy \intop_{-\infty}^{+\infty}f(t)\cos{(y(x-t))}dt=$$

$$=\intop_{-\infty}^{+\infty}(a(y)cos{(yx)}+b(y)\sin{(yx)}dy$$

а следовательно, и равенства (4) и (5), которые, применяя обозначения (1) и (2), можно записать в виде (5).

Преобразование Фурье

Проверьте свои знания.

 

Литература