8.1 Вычисление площадей

Будем называть декартовой плоскостью $\mathbb{R}^2$ множество всех упорядоченных пар действительных чисел $(x,y)$. Элементы $\mathbb{R}^2$ называют точками, а числа $x,y$ – координатами этих точек.

Пусть $a\leqslant b,c\leqslant d$. Множество всех точек, координаты $(x,y)$ которых удовлеворяют неравенствам $a\leqslant x\leqslant b,c\leqslant y\leqslant d$, будем называть прямоугольником и обозначать $[a,b;c,d]$. Стороны прямоугольника параллельны координатным осям. Если $a=b$ или $c=d$, то прямоугольник $[a,b;c,d]$ называется вырожденным.

Множество всех точек $(x,y)$ , удовлетворяющих неравенствам $a< x< b, c< y< d$, называют внутренностью прямоугольника.

Площадью (или мерой) прямоугольника $I\equiv [a,b;c,d]$ называется произведение длин его сторон, т.е. $m(I)=(d−c)(b−a)$.

Фигурой (или элементарным множеством) назовем такое множество на плоскости, которое можно представить в виде объединения конечного числа прямоугольников. Фигура называется вырожденной, если она может быть представлена в виде конечного объединения вырожденных прямоугольников.

Предложение. Каждую фигуру можно разбить на конечное число прямоугольников с попарно непересекающимися внутренностями.

Это предложение принимаем без доказательства.

Определение. Пусть фигура $X$ является объединением прямоугольников $I_{1},\dots ,I_{n}$, у которых внутренности попарно не пересекаются. Тогда мерой фигуры $X$ называется
$$m(X) = \sum_{k=1}^{n}m(I_{k}).$$

Нетрудно показать, что данное определение меры не зависит от способа разбиения этой фигуры на прямоугольники с попарно непересекающимися внутренностями. Ясно, что мера вырожденной фигуры равна нулю.

Пусть теперь $E$ – произвольное множество на плоскости, которое содержится в некотором прямоугольнике, т.е. ограниченное.Число $$m^*(E) = \inf_{X\supset E}m(X),$$ где нижняя грань берется по всевозможным фигурам $X$, содержащим множество $E$, называется внешней мерой Жордана множества $E$. Далее, число $$m_{*}(E) = \sup_{X\subset E}m(X),$$ где верхняя грань берется по всевозможным фигурам $X$, содержащимся во множестве $E$, называется внутренней мерой Жордана множества $E$.

Нетрудно показать, что если фигуры $X$ и $Y$ таковы, что $X\subset Y$, то $m(X) \leqslant m(Y)$. Отсюда сразу следует, что для любого ограниченного множества $E$ справедливо неравенство $m_{∗}(E)\leqslant m^*(E).$

Определение. Если внутренняя мера множества $E$ равна его внешней мере, то множество $E$ называется измеримым по Жордану или квадрируемым. В этом случае общее значение внешней и внутренней мер называется мерой Жордана множества $E$ и обозначается $m(E).$

Пусть $E$ – множество всех точек из единичного квадрата $[0,1;0,1]$, у которых обе координаты рациональны. Это множество не содержит ни одной невырожденной фигуры, т.к. в каждом невырожденном прямоугольнике существуют точки с иррациональными координатами. Значит, $m_{∗}(E)=0.$ С другой стороны, нетрудно показать, что любая фигура, содержащая множество $E$, содержит также единичный квадрат. Поэтому $m^∗(E)=1.$ Таким образом, $m_{∗}(E)< m^∗(E)$, так что множество $E$ неизмеримо по Жордану.

Определение. Пусть $f$ – неотрицательная функция на отрезке $[a,b].$ Подграфиком функции $f$ будем называть множество $E_{f}$ всех точек $(x,y)$, координаты которых удовлетворяют неравенствам $a\leqslant x\leqslant b,0\leqslant y\leqslant f(x).$

Теорема. Пусть функция $f$ неотрицательна и интегрируема на отрезке $[a,b].$ Тогда ее подграфик $E_{f}$ измерим и $$m(E_{f}) = \int \limits_{a}^{b} f(x)dx.$$

Возьмем разбиение $a = x_{0} < x_{1} < \dots < x_{n} = b$ отрезка $[a,b]$ и обозначим $$m_{i} = \inf_{x\in [x_{i},x_{i+1}]}f(x),\;\;\;\;\;\;\; M_{i} = \sup_{x\in [x_{i},x_{i+1}]}f(x).$$ Далее пусть $$\underline \Delta_{i} = [x_{i},x_{i+1};0,m_{i}],$$ $$\overline{\Delta_{i}} = [x_{i},x_{i+1};0,M_{i}],$$ $$\underline X=\bigcup_{i=0}^{n-1}\underline \Delta_{i},$$ $$\overline{X}=\bigcup_{i=0}^{n-1}\overline{\Delta_{i}}.$$
Тогда, по определению меры фигуры, имеем $$m(\underline X)=\sum_{i=0}^{n-1}m(\underline\Delta_{i})=\sum_{i=0}^{n-1}m_{i}\Delta x_{i}=\underline S ,$$
где $\underline S$ – нижняя сумма Дарбу функции $f$, соответствующая выбранному разбиению. Аналогично получаем, что $m(\overline X)=\overline S,$ где $\overline S$ – верхняя сумма Дарбу.
Поскольку функция $f$ интегрируема, то $\overline S — \underline S\rightarrow 0$ вместе с диаметром разбиения. Следовательно, для любого $\varepsilon >0$ найдется такое $\delta >0$, что для любого разбиения диаметра, меньшего, чем $\delta$, справедливо неравенство $\overline S — \underline S < \varepsilon$. Значит, $m(\overline X)−m(\underline X) < \varepsilon$. Заметим, что $\underline X\subset E_{f} \subset \overline X$. Поэтому $m(\underline X) \leqslant m_{*}(E_{f}) \leqslant m^*(E_{f}) \leqslant m(\overline X)$. Отсюда следует $m^*(E_{f})-m_{*}(E_{f}) <\varepsilon$, а значит, $m_{∗}(E_{f})$ и $m^∗(E_{f})$ равны. Это означает, что множество $E_{f}$ измеримо. Кроме того, из неравенств $\underline S \leqslant m(E_{f})\leqslant \overline S$ и из того, что $\displaystyle \overline S - \underline S\rightarrow 0$ и $\displaystyle \overline S \rightarrow \int\limits_{a}^{b} f(x)dx,$ $\displaystyle \underline S \rightarrow \int\limits_{a}^{b} f(x)dx$, вытекает, что $\displaystyle m(E_{f})=\int\limits_{a}^{b} f(x)dx$.

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. Вычислить площадь фигуры, ограниченной линиями $y=x^2+2,$ $y=0,$ $x=-2,$ $x=1$.
    Решение

    На отрезке $[-2;1]$ график функции $y=x^2+2$ расположен над осью $Ox$, поэтому:
    $$S=\int\limits_{-2}^{1}(x^2+2)dx=\left ( \frac{x^3}{3}+2x \right )\bigg|_{-2}^1=$$
    $$=\frac{1}{3}+2-\left ( -\frac{8}{3}-4 \right ) = \frac{1}{3} +2+\frac{8}{3}+4=9$$

    Ответ: $S=9.$

  2. Вычислить площадь фигуры, ограниченной линиями $\displaystyle y=\frac{2}{x},$ $y=x+1,$ $y=0,$ $x=3.$
    Решение

    Фигура, площадь которой нам нужно найти, зарисована серым цветом.

    Этот пример полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов:

    • На отрезке $[-1;1]$ над осью $Ox$ расположен график прямой $y=x+1$;
    • На отрезке $[1;3]$ над осью $Ox$ расположен график гиперболы $\displaystyle y=\frac{2}{x}$.

    Понятно, что площади нужно сложить, поэтому:
    $$S=\int\limits_{-1}^{1}(x+1)dx+\int\limits_{1}^{3}\frac{2dx}{x}=$$
    $$=\left ( \frac{x^2}{2} +x\right )\bigg|_{-1}^1 +2(\ln x)\bigg|_{1}^3=$$
    $$=\frac{1}{2}+1-\left ( \frac{1}{2}-1 \right ) +2(\ln3- \ln 1)=$$
    $$=\frac{1}{2}+1-\frac{1}{2}+1+2(\ln3-0)=2+2\ln3=2(1+\ln3)$$

    Ответ: $S=2(1+\ln3).$

  3. Найти площадь множества, ограниченного линиями $y=x^2+1,$ $x+y=3.$
    Решение

    Найдем абсциссы точек пересечения графиков
    $$\left\{\begin{matrix}
    y=x^2+1\\
    y=3-x
    \end{matrix}\right.$$

    Решая эту систему, находим $x_{1}=-2,$ $x_{2}=1.$ Поэтому
    $$S=\int\limits_{-2}^{1}(3-x)dx-\int\limits_{-2}^{1}(x^2+1)dx=$$
    $$=9-\frac{x^2}{2}\bigg|_{-2}^1-\left ( \frac{x^3}{3}+x \right )\bigg|_{-2}^1=$$
    $$=9-\frac{1}{2}+2-\frac{4}{3}-\frac{8}{3}-2=4.5$$

    Ответ: $S=4.5.$

  4. Найти площадь круга $x^2+y^2 \leqslant R^2$.
    Решение

    Верхняя полуокружность задается уравнением $y=\sqrt{R^2-x^2},$ $-R \leqslant x \leqslant R.$ Поэтому площадь верхнего полукруга равна
    $$S=\int\limits_{-R}^{R}\sqrt{R^2-x^2}dx=2\int\limits_{0}^{R}\sqrt{R^2-x^2}dx=$$
    $$=[x=Rz]=2R^2\int\limits_{0}^{1}\sqrt{1-z^2}dz=\frac{\pi R^2}{2},$$
    а значит, площадь всего круга равна $\pi R^2.$

    Ответ: $S=\pi R^2.$

Вычисление площадей

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Вычисление площадей».

См. также:

4.6 Свойство промежуточных значений

Теорема Больцано – Коши (о корне). Пусть функция $f$ непрерывна на отрезке $\left[a, b\right]$ и на концах этого отрезка принимает значения разных знаков. Тогда существует точка $c \in \left(a, b\right)$, такая, что $f\left(c\right) = 0$.

Применяем метод деления отрезка пополам и лемму Кантора о вложенных отрезках. Пусть, например, $f\left(a\right)<0<f\left(b\right)$. Обозначим $\left[a_0, b_0\right] \equiv \left[a, b\right]$ и разделим $\left[a_0, b_0\right]$ пополам точкой $c_0 =\displaystyle\frac{a_0+b_0}{2}$. Если $f\left(c_0\right) = 0$, то теорема доказана. В противном случае из двух полученных отрезков $\left[a_0, c_0\right]$ и $\left[c_0, b_0\right]$ выберем такой, что на его концах функция f принимает значения разных знаков. Это будет отрезок $\left[a_1, b_1\right] \equiv \left[a_0, b_0\right]$, если $f \left(c_0\right) > 0$, и $\left[a_1, b_1\right] \equiv \left[c_0, b_0\right]$, если $f \left(c_0\right) < 0$. Заметим, что длина отрезка$\left[a_1, b_1\right]$ равна $b_1 − a_1$ = $\displaystyle\frac{b-a}{2}$. На следующем шаге разделим $\left[a_1, b_1\right]$ пополам и продолжим описанную процедуру. Если на каком-либо шаге встретится точка деления, в которой функция $f$ обращается в нуль, то теорема доказана. В противном случае получим последовательность вложенных друг в друга отрезков $\left[a_n, b_n\right]$, таких, что их длины $b_n − a_n =\displaystyle\frac{b−a}{2^n} \rightarrow 0 \;при\; n \to \infty$. По лемме Кантора, существует точка c, принадлежащая всем $\left[a_n, b_n\right]$. Покажем, что $f\left(c\right) = 0$. Отсюда, в частности, будет следовать, что $c$ не совпадает ни $с\;a$, ни $с\;b$, т. к. $f\left(a\right) \neq 0$ и $f\left(b\right) \neq 0$.
Для доказательства равенства $f\left(c\right) = 0$ покажем, что для всех $n$ справедливо неравенство
$$\begin{equation}\label{eq:exp1}f \left(a_n\right) < 0 < f \left(b_n\right)\end{equation}.$$
Применим индукцию по $n$. При $n = 0$ неравенство $\eqref{eq:exp1}$ совпадает с принятым условием $f\left(a\right)<0<f\left(b\right)$. Предположим, что неравенство $\eqref{eq:exp1}$ справедливо при некотором $n$, и покажем, что оно имеет место и для $n + 1$. Обозначим $c_n =\displaystyle\frac{a_n+b_n}{2}$. Тогда, согласно описанной процедуре отбора сегментов, мы полагаем $\left[a_n+1, b_n+1\right] \equiv \left[a_n, c_n\right]$, если $f \left(c_n\right) > 0$, и $\left[a_n+1, b_n+1\right] \equiv \left[c_n, b_n\right]$, если $f \left(c_n\right) < 0$. Отсюда легко видеть, что неравенство $\left(4.5\right)$ справедливо и при $n + 1$, и тем самым $\eqref{eq:exp1}$ доказано для всех $n = 0, 1, \dotsc.$
Далее, поскольку $a_n \leqslant c \leqslant b_n \left ( n = 0, 1, \dotsc\right )$ и $b_n − a_n \rightarrow 0 \left(n \to \infty \right)$, то $a_n \rightarrow c \left(n \to \infty \right)$ и $b_n \rightarrow c \left(n \to \infty \right)$. В силу непрерывности функции $f$ в точке $c$, из неравенств $f\left(a_n\right) < 0$ следует, что и $f\left ( c\right ) = \lim_\limits{n \to \infty}f \left(a_n\right) \leqslant 0$.
С другой стороны, поскольку $f \left(b_n\right) > 0$, то и $f\left ( c\right ) = \lim_\limits{n \to \infty}f \left(b_n\right) \leqslant 0$.
Итак, получили, что $f\left(c\right) \leqslant 0$ и $f(c) \geqslant 0$. Отсюда следует, что $f\left(c\right) = 0$.

Следствие (свойство промежуточных значений). Пусть функция $f$ непрерывна на отрезке $\left[a, b\right]$. Тогда функция $f$ принимает все значения, заключенные между $f\left(a\right)$ и $f\left(b\right)$. Именно, для любого числа $A$, заключенного между $f\left(a\right)$ и $f\left(b\right)$, найдется такая точка $c \in \left[a, b\right]$, что $f\left(c\right) = A$.

Для доказательства этого следствия достаточно применить теорему Больцано – Коши к функции $g\left(x\right) = f\left(x\right) − A$.
Утверждение, обратное данному следствию, неверно. В этом легко убедиться на примере функции $$\left\{\begin{matrix}
x,    x\in\mathbb{Q}\cap \left[0,1\right]\\
1-x, x \in \left[0,1\right] \setminus \mathbb{Q}
\end{matrix}\right.$$Если же функция $f$ монотонна на $\left[a, b\right]$, то, как показывает теорема $3$, данное следствие можно обратить. Таким образом, из теоремы $3$ и свойства промежуточных значений мы получаем следующий критерий непрерывности монотонной функции.

Теорема. Монотонная на отрезке $\left[a, b\right]$ функция $f$ непрерывна на этом отрезке тогда и только тогда, когда она принимает все промежуточные значения между $f\left(a\right)$ и $f\left(b\right)$.

Пример. Покажем, что каждый многочлен нечетной степени имеет по крайней мере один действительный корень. Пусть $P_{2k+1}\left(x\right) = a_0x^{2k+1} + a_1x^{2k} + \cdots + a_{2k+1}$, причем можем считать, что $a_0 > 0$. Тогда, очевидно, $\lim_\limits{x\to-\infty }P_{2k+1}\left(x\right ) = -\infty$, а значит, существует такое $a$, что $P_{2k+1}\left(a\right ) < 0$. Далее, поскольку $\lim_\limits{x\to+\infty }P_{2k+1}\left(x\right ) = +\infty$,то найдется такое $b > a$, что $P_{2k+1}\left(a\right ) > 0$. Поскольку многочлен $P_{2k+1}$ непрерывен на $\left[a, b\right]$, то, в силу теоремы Больцано-Коши, найдется такое $c \in \left(a,b\right)$, что $P_{2k+1}\left(c\right ) =0$.

Примеры

  1. Пусть функция $f(x)=x^{2}$ определенна и непрерывна на отрезке $[-2,2]$.
    Посчитаем значение функции в точках: $x=-0,75$, $x=0,25$, $x=1,5$.

    Решение

    Мы знаем что данная функция непрерывна на данном отрезке (в силу того что это полиномиальная функция), а значит, в силу второй теоремы Коши, она принимает все свои промежуточные значения и ее значения в указанных точках равны:
    $f(-0,75)=0,5625$, $f(0,25)=0,0625$, $f(1,5)=2,25$.

  2. Докажите, что многочлен нечетной степени всегда имеет корень.
    Указание. Представьте многочлен $p\left(x\right)=a_nx^n+a_{n−1}x^{n−1}+\cdots+a_1x+a_0$ в виде $p\left(x\right)=x^n\left(a_n+\displaystyle\frac{a_{n−1}}{x}+\displaystyle\frac{a_{n−2}}{x^2}+\cdots+\displaystyle\frac{a_1}x^{n−1}+\displaystyle\frac{a_0}{x^n}\right)$ и покажите, что при $x$, больших по модулю, он принимает как положительные, так и отрицательные значения.

    Решение

    Без ограничений общности $a_n > 0$. $\lim_\limits{x\to+\infty}\left(x^n\left(a_n+\cdots+\displaystyle\frac{a_0}{x^n}\right)\right)$ — есть величина положительная.Если устремить $x$ в минус бесконечность,то $p\left(x\right)$. Есть величина отрицательная. Значит можем выбрать точки $a,b$(большие по модулю и $a_0$) такие, что $p\left(a\right)0$
    Многочлен нечетной степени есть непрерывная функция.
    По теореме Больцано-Коши существует $c\in\left[a,b\right]$
    такая, что $p\left(c\right) = 0$
    Значит как минимум один корень есть.

Литература

Смотрите также

  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр.134, 171)
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр.216)

Свойство промежуточных значений

Пройдя этот тест, вы закрепите пройденный ранее материал по теме «Свойство промежуточных значений»

7.1 Определение и элементарные свойства интеграла Римана

Определение. Пусть на отрезке $[a, b]$ задана функция $f.$ Рассмотрим произвольную систему точек $ a = x_0 < x_1 < \ldots < x_n = b.$ Каждую такую систему назовем разбиением отрезка $ [a,b],$ а само разбиение будем обозначать через $ \Pi .$ Отрезки $[x_i, x_{i+1}] (i = 0, 1, \ldots , n-1) $ называются частичными отрезками разбиения. Наибольшую из длин $\Delta  x_i = x_{i+1}-x_i$ частичных отрезков называют диаметром этого разбиения и обозначают $$ d(\Pi) = \underset{0 \leqslant i \leqslant n-1} {\max} \Delta x_i.$$
В каждом из частичных отрезков $ [x_i, x_{i+1}] $ выберем произвольным образом точку $\xi_i$ и составим сумму $$ \sigma = \sum\limits_{i=0}^{n-1} f (\xi_i) \Delta x_i.$$
Сумма $\sigma$ называется интегральной суммой для функции $f,$ соответствующей заданному разбиению $\Pi $ и заданному выбору точек $\xi_i .$
Для каждого заданного разбиения множество всевозможных интегральных сумм бесконечно, поскольку каждая интегральная сумма зависит от способа выбора точек $\xi_i .$
Определение. Число $I$ называется пределом интегральных сумм $\sigma$ при стремлении к нулю диаметра разбиения $d(\Pi),$ если для любого $\varepsilon > 0 $ найдется такое $\delta > 0,$ зависящее, вообще говоря, от $\varepsilon,$ что для любого разбиения $\Pi $ отрезка $[a, b]$ диаметра $d(\Pi) < \delta $ при любом выборе промежуточных точек $\xi_i $ из частичных отрезков этого разбиения соответствующая интегральная сумма $ \sigma $ удовлетворяет неравенству $ |\sigma — I| < \varepsilon, $ т. е. $ \forall \varepsilon  \exists \delta > 0 : \forall \Pi,$  $d(\Pi) < \delta$  $\forall \xi_i \in [x_i, x_{i+1}] (i = 0, 1, \ldots , n-1) |\sigma — I| < \varepsilon. $
Определение. Если существует конечный предел интегральных сумм при стремлении к нулю диаметра разбиения, то этот предел называется интегралом от функции $f$ по отрезку $[a, b]$ и обозначается $\displaystyle\int\limits_a^b \!f(x)\,dx .$ В этом случае функция $f$ называется интегрируемой на отрезке $[a, b].$ В противном случае говорят, что функция $f$ неинтегрируема на $[a, b].$
Итак, $$ \int\limits_a^b\! f(x)\,dx  = \underset {d(\Pi) \to 0}{\lim} \sigma .$$

Геометрический смысл определенного интеграла.


С геометрической точки зрения интегральная сумма представляет собой сумму площадей прямоугольников высотой $f (\xi_i)$ и шириной $x_{i+1}-x_i.$
Поэтому определенный интеграл – предел интегральных сумм при стремлении к нулю диаметра разбиения – можно интерпретировать как площадь (с учетом знака) криволинейной трапеции, ограниченной осью $Ox,$ прямыми $x = a, x = b$ и графиком функции $y = f(x).$
По аналогии с определением предела функции в смысле Гейне, определение предела интегральных сумм можно выразить в терминах последовательностей следующим образом.

Определение. Число $I$ называется пределом интегральных сумм при стремлении к нулю диаметра разбиения, если для любой последовательности $\Pi_1, \Pi_2, \ldots , \Pi_n, \ldots $ разбиений отрезка $[a, b],$ такой, что $d(\Pi_n) \to 0$ при $ n \to \infty,$ и при любом выборе промежуточных точек из частичных отрезков этих разбиений соответствующая последовательность интегральных сумм $\sigma_1, \sigma_2, \ldots , \sigma_n, \ldots$ сходится к числу $I.$

Упражнение. Докажите равносильность этих двух определений предела интегральных сумм.

Теорема. Если функция $f$ интегрируема на отрезке $[a, b],$ то она ограничена на этом отрезке.

Предположим, что функция $f$ неограничена на $[a, b],$ и покажем, что в этом случае для любого разбиения $\Pi$ промежуточные точки $\xi_i$ можно выбрать так, чтобы модуль соответствующей интегральной суммы оказался большим любого наперед заданного числа. Рассмотрим произвольное разбиение $\Pi : a = x_0 < x_1 < \ldots < x_n = b.$ Если $f$ неограничена на $[a, b],$ то найдется такой частичный отрезок $[x_j , x_{j+1}],$ на котором $f$ также неограничена. Действительно, если бы $f$ оказалась ограниченной на каждом из частичных отрезков, то она была бы ограниченной и на всем отрезке $[a, b].$ Итак, предположим, что $f$ неограничена сверху на $[x_j , x_{j+1}].$ Зададим произвольное число $M$ и покажем, что точки $\xi_i$ можно выбрать так, чтобы соответствующая интегральная сумма $\sigma$ стала большей, чем $M.$ Действительно, сначала выберем точки $\xi_i$ во всех отрезках, кроме $[x_j , x_{j+1}],$ и составим сумму $\displaystyle\sigma^\prime = \sum\limits_{i:i\neq j}$ $f(\xi_i) \Delta x_i.$ Затем точку $\xi_j$ выберем так, чтобы выполнялось неравенство $f(\xi_j ) \Delta x_j + \sigma^\prime > M.$ Это возможно в силу того, что функция $f$ неограничена сверху на $[a, b].$ Тогда получим, что для интегральной суммы $\sigma = \sigma^\prime + f(\xi_j ) \Delta x_j$ выполнено неравенство $\sigma > M.$
Случай неограниченной снизу $f$ исчерпывается аналогичным образом.
Наконец заметим, что из определения предела интегральных сумм вытекает, что при достаточно мелком разбиении интегральные суммы ограничены независимо от способа выбора промежуточных точек. Действительно, в определении предела условие $d(\Pi) < \delta$ влечет выполнение неравенства $|\sigma−I| < \varepsilon,$ откуда следует, что $|\sigma| < |I|+ \varepsilon.$ Мы же, предположив, что функция $f$ неограничена на $[a, b],$ получаем противоречие с ограниченностью интегральных сумм.

Замечание. В доказательстве теоремы мы воспользовались тем, что для интегрируемой функции при достаточно мелком разбиении интегральные суммы ограничены. На самом деле у интегрируемой функции ограничено множество всех интегральных сумм, соответствующих всевозможным разбиениям, а не только достаточно мелким. Действительно, мы доказали, что интегрируемая на $[a, b]$ функция $f$ ограничена, т. е. существует такое число $A,$ что $|f(x)| < A$ для всех $x \in [a, b].$ Поэтому для любого разбиения $\Pi$ при любом способе выбора точек $\xi_i$ получим $$ |\sigma| \leqslant \sum\limits_{i=0}^{n-1} \left|f(\xi_i) \Delta x_i\right| \leqslant A \sum\limits_{i=0}^{n-1} \Delta x_i = A (b-a). $$
Итак, каждая интегрируемая функция ограничена. Однако не каждая ограниченная функция интегрируема.

Пример ограниченной неинтегрируемой функции. 

Рассмотрим функцию Дирихле $$\begin{equation*}
\mathcal{D}\left(x\right) =
\begin{cases}
1, &\text{x — рационально,}\\
0, &\text{x — иррационально.}
\end{cases}
\end{equation*} $$

Эта функция ограничена. Покажем, что она неинтегрируема на любом невырожденном отрезке $[a, b].$ Действительно, если для произвольного разбиения $\Pi$ все точки $\xi_i$ выбрать рациональными, то получим $$ \sigma = \sum\limits_{i=0}^{n-1} \mathcal {D}(\xi_i) \Delta x_i = \sum\limits_{i=0}^{n-1} \Delta x_i = b-a.$$ Если же все точки $\xi_i$ взять иррациональными, то $$ \sigma = \sum\limits_{i=0}^{n-1} \mathcal {D}(\xi_i) \Delta x_i = 0. $$ Отсюда следует, что интегральные суммы не имеют предела при стремлении к нулю диаметра разбиения.

Пример 1. 

Пусть $f(x) = c,$ $a \leqslant x \leqslant b.$ Тогда для любого разбиения $\Pi$ при любом выборе точек $\xi_i$ будет $f(\xi_i) = c$ и поэтому $$\sigma = \sum\limits_{i=0}^{n-1} f(\xi_i)\Delta x_i = c \sum\limits_{i=0}^{n-1} \Delta x_i = c (b-a).$$ Таким образом, $ \displaystyle\int\limits_{a}^{b}\! c\,dx = c (b-a).$

Пример 2.

Пусть $f(x) = x, 0 \leqslant x \leqslant 1.$ Выберем произвольное разбиение $\Pi : 0 = x_0 < x_1 < \ldots < x_n = 1$ и точки $\xi_i \in [x_i, x_{i+1}].$ Тогда
соответствующая интегральная сумма будет иметь вид $\displaystyle\sigma = \sum\limits_{i=0}^{n-1} \xi_i \Delta x_i.$ Наибольшая из всех интегральных сумм, соответствующая выбранному разбиению, равна $\displaystyle\overline \sigma = \sum\limits_{i=0}^{n-1} x_{i+1} \Delta x_i,$ а наименьшая $\displaystyle\underline \sigma = \sum\limits_{i=0}^{n-1} x_i \Delta x_i.$ Тогда имеем $$\overline {\sigma} + \underline \sigma = \sum_{i=0}^{n-1}(x_{i+1}+x_i) \Delta x_i = \sum\limits_{i=0}^{n-1}(x_{i+1}^2 — x_{i}^2)$$ $$\overline {\sigma}-\underline \sigma = \sum\limits_{i=0}^{n-1}(x_{i+1}+x_i) \Delta x_i \leqslant d(\Pi) \sum\limits_{i=0}^{n-1} \Delta x_i = d(\Pi).$$ Таким образом, $\overline \sigma −\underline \sigma \to 0$ при $d(\Pi) \to 0,$ а поскольку $\underline \sigma + \overline \sigma = 1,$ то обе эти суммы стремятся к $\displaystyle\frac {1}{2}.$ Отсюда и из неравенства $\underline \sigma \leqslant \sigma \leqslant \overline \sigma$ сразу следует, что $\displaystyle\sigma \to \frac{1}{2}$ при $d(\Pi) \to 0.$ Итак, функция интегрируема и $\displaystyle\int\limits_{0}^{1} \!x\,dx = \frac{1}{2}.$

Пример 3. Ступенчатые функции.

Функция $f$ называется ступенчатой
на отрезке $[a, b],$ если $[a, b]$ можно разбить на отрезки $[a_0, a_1], \ldots ,[a_{s−1}, a_s],$ где $a = a_0 < a_1 < \ldots < a_s = b,$ такие, что функция $f$ постоянна на каждом интервале $(a_j , a_{j+1}),$ т. е. $f(x) = c_j,$ $x \in (a_j , a_{j+1}),$ $j = 0, 1, \ldots , s − 1.$ При достаточно малых $\delta$ для разбиения $\Pi : a = x_0 < x_1 < \ldots < x_n = b,$ диаметр которого меньше, чем $\delta,$ все частичные отрезки разбиения, за исключением, быть может, не более чем $2s$ штук, расположены целиком в соответствующих интервалах постоянства функции $f.$ Пусть разбиению $\Pi$ при каком-либо выборе промежуточных точек $\xi_j$ соответствует интегральная сумма $\sigma.$ Имеем $$\left|\sigma-\sum\limits_{j=0}^{s-1} c_j (a_{j+1}-a_j)\right| \leqslant 2s \cdot \delta \cdot \left[\underset{a\leqslant x\leqslant b}{\mathrm{\max}} f(x)-\underset{a\leqslant x\leqslant b}{\mathrm{\min}} f(x)\right].$$ Отсюда ясно, что при стремлении к нулю диаметра разбиения интегральные суммы стремятся к $\displaystyle\sum\limits_{j=0}^{s-1} c_j (a_{j+1}-a_j),$ т.е. $\displaystyle\int\limits_{a}^{b} \!f(x)\,dx = \sum\limits_{j=0}^{s-1} c_j (a_{j+1}-a_j).$

Пример 4. Функция Римана.

Напомним, что функция Римана определяется равенством $$\begin{equation*}
\mathcal{R}\left(x\right) =
\begin{cases}
0, &\text{x — рационально,}\\
\displaystyle\frac{1}{q}, &\text{где x = $\displaystyle\frac{p}{q}$ — несократимая дробь.}
\end{cases}
\end{equation*} $$ Покажем, что эта функция интегрируема на $[0, 1]$ и ее интеграл равен нулю. Для этого заметим, что для любого $x \in [0, 1]$ имеем $\lim\limits_{y \to x} \mathcal{R}(y) = 0.$ Действительно, это сразу следует из того, что при любом фиксированном $\varepsilon > 0$ на отрезке $[0, 1]$ существует лишь конечное число таких точек, в которых функция Римана принимает значения большие, чем $\varepsilon.$ Обозначим число таких точек через $N_\varepsilon.$ Зафиксируем $\varepsilon > 0$ и положим $\displaystyle ε^\prime = \frac {\varepsilon}{2},$ $\displaystyle\delta = \frac{\varepsilon^{\prime}}{2N_{\varepsilon^\prime}}.$ Тогда при любом разбиении $\Pi,$ диаметр которого меньше, чем $\delta,$ и при любом способе выбора промежуточных точек количество слагаемых в интегральной сумме, для которых значение функции больше, чем $\varepsilon^\prime,$ не превосходит $2N_{\varepsilon^\prime}.$ Поэтому для интегральной суммы σ справедлива следующая оценка: $$\sigma \leqslant N_{\varepsilon^{\prime}}\delta + \varepsilon^\prime \sum\limits_{i=0}^{n-1} \Delta x_i \leqslant N_{\varepsilon^{\prime}}  \frac{\varepsilon^{\prime}}{2N_{\varepsilon^\prime}} = \varepsilon.$$ Таким образом, получили, что $\sigma \to 0$ при $d(\Pi) \to 0,$ т. е. $\displaystyle\int\limits_{0}^{1}\! \mathcal{R}(x)\,dx = 0.$

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. Исходя из определения определенного интеграла, найти $\displaystyle\int\limits_{0}^{T} (v_0 + gt)\,dt,$ где $v_o$ и $g$ — постоянны.
    Решение

    Рассмотрим разбиение отрезка $[0; T]$ на $n$ равных частей точками $\displaystyle\mathcal{T}_i = \frac {T_i}{n}$ $0 \leqslant i \leqslant n.$ Выберем точки разметки на левых концах отрезков разбиения: $\xi_i = \mathcal{T}_i.$ Интегральная сумма для функции $f(t) = v_0+gt$ равна: $$S_n=\sum\limits^{n-1}_{i=0}(v_0 + g\xi_i)(\mathcal{T}_{i+1}-\mathcal{T}_i)=\sum\limits^{n-1}_{i=0}\left(v_0 + g\frac{T_i}{n}\right)\frac{T}{n} = \frac{T}{n}\left(v_0n + \frac{gT}{n}\sum\limits^{n-1}_{i=0}\right).$$ По формуле суммы арифметической прогрессии $\displaystyle\sum\limits^{n-1}_{i=0}i = \frac{(n-1)n}{2},$ следовательно, $$S_n = \frac{T}{n}\left(v_0n + \frac{gT(n-1)n}{2n}\right) = v_0T + \frac {gT^2(n-1)}{2n}.$$ Сведём вычисление интеграла к вычислению обычной последовательности. $$\int\limits^T_0 (v_0 + gt)\,dt = \lim_{n\to +\infty}\left(v_0T+\frac{gT^2(n-1)}{2n}\right)=v_0T+\frac{gT^2}{2}.$$

  2. Вычислить определенный интеграл, рассматривая его как предел соответствующих интегральных сумм и производя разбиение промежутка интеграции надлежащим образом: $\displaystyle\int\limits^1_0 a^x \,dx,$ $(a>0).$
    Решение

    Разобьем отрезок интегрирования на $n$ равных частей: $\displaystyle x_i=\frac{i}{n},$ $0 \leqslant i \leqslant$ n и выберем точки разметки $\xi_i = x_i (0 \leqslant i \leqslant n−1).$ Длина каждого из отрезков разбиения $\displaystyle\Delta x_i = x_{i+1}-x_i=\frac{1}{n}.$ Интегральная сумма $$S_n = \sum\limits_{i=0}^{n-1}a^{\xi_i} \Delta x_i = \frac{1}{n} \sum\limits_{i=0}^{n-1} a^{\frac{i}{n}} = \frac{1}{n} \sum\limits^{n-1}_{i=0}(a^{\frac{i}{n}})^i.$$ Суммируя геометрическую прогрессию с первым членом, равным 1, и знаменателем $q=a^{\frac{1}{n}},$ получаем $$\sum\limits^{n-1}_{i=0}(a^{\frac{1}{n}})^i = \frac{a-1}{a^{\frac{1}{n}}-1}$$ Отсюда следует, что $$S_n = \frac {a-1}{n(a^{\frac{1}{n}}-1)}$$ Так как при $n \to +\infty$ последовательность $\displaystyle a^{\frac{1}{n}}-1 \sim \frac{\ln a}{n},$ то $$\int\limits^1_0 a^x \,dx = \lim_{n\to +\infty} S_n = \lim_{n\to +\infty} \frac{(a-1)n}{n \ln a} = \frac{a-1}{\ln a}.$$

  3. Вычислить определенный интеграл, рассматривая его как предел соответствующих интегральных сумм и производя разбиение промежутка интеграции надлежащим образом: $\displaystyle\int\limits^b_a \frac{dx}{x^2},$ $(0 < a < b).$
    Решение

    Пусть $x_o, x_1, \ldots, x_n$ — произвольное разбиение отрезка $[a;b].$ Выберем точки разметки $\xi_i = \sqrt{x_ix_{i+1}}$ $(0 \leqslant i \leqslant n-1).$ Интегральная сумма $\displaystyle S_n = \sum\limits^{n-1}_{i=0} \frac{1}{\xi_{i}^{2}}(x_{i+1}-x_i)=\sum\limits^{n-1}_{i=0} \frac{1}{x_ix_{i+1}}(x_{i+1}-x_i)= \sum\limits^{n-1}_{i=0}\left(\frac{1}{x_i}-\frac{1}{x_{i+1}}\right)=$ $\displaystyle=\left(\frac{1}{x_0}-\frac{1}{x_1}\right)+\left(\frac{1}{x_1}-\frac{1}{x_2}\right)+\left(\frac{1}{x_2}-\frac{1}{x_3}\right)+\ldots+\left(\frac{1}{x_{n-1}}-\frac{1}{x_n}\right)=$ $=\displaystyle\frac{1}{x_0}-\frac{1}{x_n}=\frac{1}{a}-\frac{1}{b}.$ Отсюда получаем следующее: $$\int\limits_a^b \frac{dx}{x^2} = \lim_{n\to+\infty} S_n = \lim_{n\to+\infty}\left(\frac{1}{a}-\frac{1}{b}\right) = \frac{1}{a}-\frac{1}{b}.$$

Интеграл Римана

Данный тест поможет Вам разобраться с материалом по теме «Интеграл Римана».

Литература

Смотрите также

6.3 Интегрирование рациональных функций.

Рациональной функцией (или дробью) называется функция вида
$$f(x) = \displaystyle\frac{P(x)}{Q(x)},$$
где $P(x)$ и $Q(x)$ – многочлены. Если степень числителя меньше степени знаменателя, то рациональная дробь называется правильной. Ясно, что каждая рациональная дробь может быть представлена в виде
$$\displaystyle\frac{P(x)}{Q(x)} = R(x) + \displaystyle\frac{P_{1}(x)}{Q(x)},$$
где $R(x)$ – многочлен, а дробь $\displaystyle\frac{P_{1}(x)}{Q(x)}$ – правильная. Поскольку интегралы от многочленов вычисляются совсем просто, то мы будем рассматривать методы интегрирования правильных дробей.

Будем различать следующие четыре вида дробей:

  • $\displaystyle\frac{A}{x-a}$, где $A$, $a$ — постоянные.
  • $\displaystyle\frac{A}{(x-a)^k}$, где $A$, $a$ — постоянные, $k = 2,3 \ldots$
  • $\displaystyle\frac{Mx + N}{x^2 + px + q}$, где $M$, $N$, $p$, $q$ – постоянные, квадратный трехчлен в знаменателе не имеет действительных корней.
  • $\displaystyle\frac{Mx + N}{(x^2 + px + q)^k}$, где $M$, $N$, $p$, $q$ – постоянные, квадратный трехчлен в знаменателе не имеет действительных корней.

Покажем как вычисляются интегралы от каждой из этих дробей.

  • $\int \displaystyle\frac{a}{x-a}dx = A\ln\left | x — a \right | + C$.
  • $\int \displaystyle\frac{a}{(x-a)^k}dx = -\frac{A}{k-1}\cdot \displaystyle\frac{1}{(x-a)^{k-1}} + C$.
  • $\int \displaystyle\frac{Mx + N}{x^2 + px + q}dx$. Для вычисления этого интеграла представим подынтегральное выражение в виде
    $$\displaystyle\frac{Mx + N}{x^2 + px + q} = \displaystyle\frac{\frac{M}{2}(2x+p) + N — p\frac{M}{2}}{x^2 + px + q} = \displaystyle\frac{M}{2} \cdot \displaystyle\frac{2x+p}{x^2 + px + q} + \displaystyle\frac{N-p\displaystyle\frac{M}{2}}{x^2 + px + q}.$$
    Для вычисления интеграла от первого слагаемого справа, очевидно, достаточно выполнить замену $t = x^2 + px + q$. Тогда получим
    $$\int \displaystyle\frac{2x + p}{x^2 + px + q} = \ln(x^2 + px + q) + C.$$
    Для вычисления интеграла от второго слагаемого справа выделим полный квадрат в знаменателе, т.е. представим знаменатель в виде $x^2 + px + q = (x+\displaystyle\frac{p}{2})^2 + q — \displaystyle\frac{p^2}{4}$. Поскольку квадратный трехчлен в знаменателе не имеет действительных корней, то его дискриминант $\displaystyle\frac{p^2}{4} — q < 0$. Обозначим $a^2 = q — \displaystyle\frac{p^2}{4}$. Выполняя замену $x + \displaystyle\frac{p}{2} = t$, получим
    $$\int \displaystyle\frac{1}{x^2 + px + q}dx = \int \displaystyle\frac{1}{(x+\displaystyle\frac{p}{2})^2 + a^2}dx = \int \displaystyle\frac{dt}{t^2 + a^2} = \frac{1}{a^2} \int \displaystyle\frac{dt}{\displaystyle\frac{t^2}{a^2} + 1} =\\= \displaystyle\frac{1}{a} \int \displaystyle\frac{d(\displaystyle\frac{t}{a})}{(\displaystyle\frac{t}{a})^2 + 1} = \displaystyle\frac{1}{a} \text{arctg}\: \displaystyle\frac{t}{a} + C .$$
    Возвращаясь теперь к старой переменной, получим исходный интеграл.
  • $\displaystyle\frac{Mx + N}{(x^2 + px + q)^k}$. Для вычисления этого интеграла, как и в предыдущем случае, представим подынтегральное выражение в виде
    $$\displaystyle\frac{Mx + N}{(x^2 + px + q)^k} = \displaystyle\frac{\frac{M}{2}(2x + p) + N — p\displaystyle\frac{M}{2}}{(x^2 + px + q)^k} =\\=\displaystyle\frac{M}{2} \cdot \displaystyle\frac{2x+p}{(x^2 + px + q)^k} + \displaystyle\frac{N-p\frac{m}{2}}{(x^2 + px + q)^k}.$$
    Для вычисления интеграла от первого слагаемого справа, очевидно, достаточно выполнить замену $t = x^2 + px + q.$ Тогда получим
    $$\int \displaystyle\frac{2x + p}{(x^2 + px + q)^k}dx = \displaystyle\frac{1}{-k+1}(x^2+px+q)^{-k+1} +C.$$
    Для вычисления интеграла от второго слагаемого, как и в предыдущем случае, выделим полный квадрат из квадратного трехчлена в знаменателе. Тогда после замены переменной $t = x+\displaystyle\frac{p}{2}$ он сведется к интегралу вида $\int \displaystyle\frac{dt}{(t^2+a^2)^k}$. Обозначим этот интеграл через $I_{k}$ и выведем рекуррентную формулу для вычисления этого интеграла. Будем применять формулу интегрирования по частям. Имеем
    $$ I_{k} = \int \displaystyle\frac{dt}{(t^2 + a^2)^k} = \begin{bmatrix}u = \displaystyle\frac{1}{(t^2+a^2)^k}, & dv = dt \\ du = -\displaystyle\frac{2kt}{(t^2+a^2)^{k+1}}, & v = t \end{bmatrix} =\\=\displaystyle\frac{t}{(t^2 + a^2)^k} + 2k\int \displaystyle\frac{t^2}{(t^2 + a^2)^{k+1}}dt = \displaystyle\frac{t}{(t^2 + a^2)^k}+2k\int\displaystyle\frac{t^2 + a^2 — a^2}{(t^2 + a^2)^{k+1}}dt =\\= \displaystyle\frac{t}{(t^2 + a^2)^k} + 2k\int \displaystyle\frac{dt}{(t^2 + a^2)^k} — 2ka^2 \int \displaystyle\frac{dt}{(t^2 + a^2)^{k+1}} =\\= \displaystyle\frac{t}{(t^2 + a^2)^k} + 2kI_{k} — 2ka^2I_{k+1}.$$
    Отсюда находим
    $$I_{k+1} = \displaystyle\frac{1}{2ka^2}\begin{bmatrix} \displaystyle\frac{t}{(t^2 + a^2)^k} +(2k-1)I_k \end{bmatrix} (k = 1,2,\ldots).$$
    При этом, как мы уже вычислили ранее,
    $$I_{1} = \int \displaystyle\frac{dt}{t^2 + a^2} = \displaystyle\frac{1}{a} \text{arctg}\:\displaystyle\frac{t}{a} + C.$$
    Итак, и в этом случае мы получили правило вычисления интеграла от дроби четвертого вида.

Из основной теоремы алгебры следует, что каждый многочлен с действительными коэффициентами может быть представлен в виде произведения конечного числа линейных сомножителей вида $x — a$ и квадратичных сомножителей вида $x^2 + px + q$, где $\displaystyle\frac{p^2}{4} — q < 0$. Именно, справедливо равенство
$$Q(x) = A(x-a_1)^{k_1}\ldots(x-a_r)^{k_r}(x^2+p_1x+q_1)^{m_1}\ldots(x^2+p_sx+q_s)^{m_s}, (1)$$
где $k_i$ и $m_i$ – целые неотрицательные числа.
С использованием этого представления можно показать, что справедлива следующая

Теорема. Пусть $\displaystyle\frac{P(x)}{Q(x)}$ – правильная дробь, знаменатель которой допускает разложение (1). Тогда эта дробь единственным образом может быть представлена в виде суммы простых дробей, т.е.
$$\displaystyle\frac{P(x)}{Q(x)} = \sum_{i=1}^{r}\sum_{j=1}^{k_i}\displaystyle\frac{A_{ij}}{(x-a_i)^j} + \sum_{i=1}^{r}\sum_{j=1}^{m_i}\displaystyle\frac{M_{ij}x + N_{ij}}{(x^2 + P_ix+q_i)^j}.$$

Выше уже показано, что интеграл от каждой простой дроби выражается через элементарные функции. Таким образом, справедлива

Теорема. Каждая рациональная дробь имеет первообразную, которая выражается через элементарные функции, а именно, с помощью рациональных функций, логарифмической функции и арктангенса.

Метод Остроградского. Этот метод интегрирования рациональных дробей предназначен для выделения рациональной части из интеграла от рациональной функции. Именно, используя представление (1), интеграл от правильной дроби представляется в виде
$$\int \displaystyle\frac{P(x)}{Q(x)} =\\=\int \displaystyle\frac{P(x)}{A(x-a_1)^{k_1}\ldots(x-a_r)^{k_r}(x^2+p_1x +q_1)^{m_1}\ldots(x^2+p_sx+q_s)^{m_s}}dx =\\=\int \displaystyle\frac{R_{k_1 + \ldots + k_r + 2(m_1 + \ldots + m_s) — r — 2s — 1}(x)dx}{A(x-a_1)^{k_1-1}\ldots(x-a_r)^{k_r-1}(x^2+p_1x +q_1)^{m_1-1}\ldots(x^2+p_sx+q_s)^{m_s-1}} +\\+ \int \displaystyle\frac{S_{r+2r-1}(x)}{A(x-a_1)…(x-a_r)(x^2+p_1x +q_1)^{m_1-1}\ldots(x^2+p_sx+q_s)}dx,$$
где многочлены $R_{k_1+\ldots+k_r+2(m_1 + \ldots + m_s)-r-2s-1}(x)$ и $S_{r+2s-1}(x)$ степени $k_1+\ldots+k_r+2(m_1+\ldots+m_s)-r-2s-1$ и $r+2s-1$ соответственно имеют неопределенные коэффициенты. Эти коэффициенты находятся затем из условия равенства производных левой и правой частей записанного равенства. Таким образом, вычисление интеграла от правильной дроби сводится к вычислению интеграла от другой правильной дроби, у которой в знаменателе все множители в первой степени. Такой интеграл вычисляется, как указано выше, путем разложения подынтегрального выражения
на простые дроби. Тем самым отпадает необходимость в использовании полученной выше рекуррентной формулы для вычисления интегралов от простой дроби четвертого типа.

Примеры решения задач

  1. Найти неопределенный интеграл $I = \int \displaystyle\frac{2x^2 — 3x + 3}{x^3 — 2x^2 + x}dx$.
    Решение

    Разложим знаменатель на множители: $x^3 -2x^2 + x = x(x-1)^2$. Тогда подынтегральная функция представима в виде

    $$\displaystyle\frac{2x^2-3x+3}{x(x-1)^2} = \displaystyle\frac{A}{x} + \displaystyle\frac{B}{x-1} + \displaystyle\frac{C}{(x-1)^2},$$
    где $A$, $B$, $C $ – постоянные коэффициенты. Для их нахождения приведем выражение справа к общему знаменателю и, приравнивая числители полученных дробей, найдем

    $$2x^2-3x+3=A(x-1)^2 + Bx(x-1)+Cx.$$

    Поскольку это тождество имеет место при всех $x$, кроме $x=0,x=1,$ то коэффициенты этих многочленов при одинаковых степенях $x$ равны. Приравнивая их, получаем линейную систему уравнений

    $$\left.\begin{matrix}x^2 : & A+B=2\\ x : & -2A-B+C=-3\\ x^0 : & A=3\end{matrix}\right\}$$

    Решая эту систему, находим $A = 3$, $B = −1$, $C = 2.$ Подставляя эти значения в разложение подынтегральной функции и вычисляя соответствующие интегралы, получаем
    $$I=3\ln\left | x \right | — \ln \left | x-1 \right | — \displaystyle\frac{2}{x-1} + C = \ln \displaystyle\frac{\left | x \right |^3}{\left | x-1 \right |} — \displaystyle\frac{2}{x-1} +C.$$

  2. Найти неопределенный интеграл $I = \int \displaystyle\frac{x dx}{x^3 + 1}dx$.
    Решение

    Как и в предыдущем примере, разложим на множители знаменатель:

    $$x^3 + 1 = (x+1)(x^2-x+1).$$
    Раскладываем подынтегральное выражение с неопределнными коэффициентами
    $$\displaystyle\frac{x}{x^3 + 1} = \displaystyle\frac{A}{x+1} + \displaystyle\frac{Mx+N}{x^2-x+1},$$
    откуда $x = A(x^2−x+1)+(Mx+N)(x+1)$. Приравнивая коэффициенты при одинаковых степенях $x$, составляем линейную систему для нахождения чисел $A$, $M$, $N$:
    $$\left.\begin{matrix}x^2 : & 0+A+M,\\ x : & 1=-A+M+N,\\ x^0 : & 0=A+N.\end{matrix}\right\}$$
    Решая эту систему, находим $A = −\displaystyle\frac{1}{3}, M = N =\displaystyle\frac{1}{3}$. Поэтому
    $$I=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{3}\int \displaystyle\frac{x+1}{x^2-x+1}dx=\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\int \displaystyle\frac{2x-1}{x^2-x+1}dx + \displaystyle\frac{1}{2}\int \displaystyle\frac{dx}{x^2-x+1}=\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\ln(x^2-x+1) + \displaystyle\frac{1}{2} \int \displaystyle\frac{dx}{(x — \displaystyle\frac{1}{2})^2 + \displaystyle\frac{3}{4}} =\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\ln(x^2-x+1) + \displaystyle\frac{1}{\sqrt{3}}\text{arctg}\:\displaystyle\frac{2}{\sqrt{3}}(x-\displaystyle\frac{1}{2}) + C.$$

  3. Найти неопределенный интеграл $\int \displaystyle\frac{(x^2 — 19x + 6)}{(x-1)(x^2 + 5x + 6)}dx$
    Решение

    Разложим знаменатель на множители: $(x-1)(x^2+5x+6) = (x-1)(x-2)(x-3).$ Тогда подынтегральная функция представима в виде:
    $$\displaystyle\frac{x^2-19x+6}{(x-1)(x^2+5x+6)} = \displaystyle\frac{A}{x-1} + \displaystyle\frac{B}{x+2} + \displaystyle\frac{C}{x+3}$$
    Для нахождения $A, B$ и $C$ приведем выражение справа к общему знаменателю и, приравнивая числители полученных дробей, найдем
    $$A(x^2 + 5x + 6) + B(x^2 + 2x — 3) + c(x^2 + x — 2) = x^2 -19x+6$$
    Приравнивая коэффициенты при одинаковых степенях $x$, составляем систему линейных уравнений для нахождения чисел $A, B, C$
    $$\left.\begin{matrix} x^2 : & 1=A+B+C \\ x : & -19 = 5A+2B+C \\ x^0 : & 6=6A-3B-2C \end{matrix}\right\}$$
    Решаем систему, получаем значения $A = -1; B = -16; C=18$. Возвращаемся к изначальному интегралу и находим окончательное решение
    $$\int (-\displaystyle\frac{1}{x-1}-\displaystyle\frac{16}{x+2}+\displaystyle\frac{18}{x+3})dx = -\ln\left | x-1 \right | — 16\ln\left | x+2 \right |+18\ln\left | x+3 \right | + C.$$

  4. Найти неопределенный интеграл $\int \displaystyle\frac{x^2-6x+8}{x^3+8}dx$
    Решение

    По формуле суммы кубов раскладываем знаменатель на множители, используя формулу сокращенного умножения $a^3 + b^3 = (a+b)(a^2-ab+b^2)$
    $$\int \displaystyle\frac{x^2-6x+8}{x^3+8}dx = \int \displaystyle\frac{x^2-6x+8}{(x+2)(x^2-2x+4)}dx.$$
    Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей
    $$\displaystyle\frac{A}{x+2} +\displaystyle\frac{Bx+C}{x^2-2x+4} = \displaystyle\frac{x^2-6x+8}{(x+2)(x^2-2x+4)}.$$
    Приводим дробь к общему знаменателю
    $$A(x^2 — 2x + 4) + B(x^2 + 2x) + C(x+2) = x^2-6x+8$$
    Составим и решим систему
    $$\left.\begin{matrix}x^2 : & A+B=1\\ x : & -2A+2B+C=-6\\ x^0 : & 4A+2C=8\end{matrix}\right\}$$
    Подставим значения $A = 2$, $B = -1$, $C = 0$ в функцию и найдем интеграл
    $$\int (\displaystyle\frac{2}{x+2} — \displaystyle\frac{x}{x^2-2x+4})dx = 2\int \displaystyle\frac{dx}{x+2} + \int \displaystyle\frac{-\displaystyle\frac{1}{2}d(x^2-2x+4) — dx}{x^2 -2x +4} =\\= 2\ln \left | x+2 \right | — \displaystyle\frac{1}{2}\int\displaystyle\frac{d(x^2-2x+4)}{x^2-2x+4} — \int\displaystyle\frac{dx}{x^2-2x+1 +3} = \\= 2\ln \left | x+2 \right | — \frac{1}{2}\ln(x^2 — 2x + 4) — \int \frac{d(x-1)}{(x-1)^2 + (\sqrt{3})^2} = \\= 2\ln \left | x+2 \right | — \frac{1}{2}\ln(x^2 — 2x + 4) — \frac{1}{\sqrt{3}}\text{arctg}\:(\frac{x-1}{\sqrt{3}}) + C.$$

Интегрирование рациональных функций

Тест на тему: Интегрирование рациональных функций

Литература:

Смотрите также:

 

5.1 Дифференцируемость и производная

$\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\sgn}{sgn}$ Определение 1. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Если существует конечный предел $\displaystyle  \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной функции $f$ в точке $x_0$ и обозначается $f^\prime(x_0)$, или $\displaystyle \frac{df}{dx}(x_0),$ $Df(x_0).$

Определение 2. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Функцию $f$ будем называть дифференцируемой в точке $x_0,$ если существует такая постоянная $A$ (зависящая от $x_0$ и не зависящая от $x$), что справедливо равенство: $$f(x) − f (x_0) = A (x − x_0) + r(x), $$где $r(x) = \overline{o} (x − x_0) \: \: \: (x \to x_0).$

Короче определение дифференцируемости можно записать в следующем виде: $$f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0) \: \: \: (x \to x_0).$$
Покажем, что эти два определения эквивалентны в том смысле, что дифференцируемость функции равносильна существованию производной.

Теорема. Функция $f$ дифференцируема в точке $x_0 ∈ (a, b)$ тогда и только тогда, когда у $f$ существует производная в точке $x_0.$

Пусть $f$ дифференцируема в точке $x_0.$ Это означает, что $f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0),$ где $A$ не зависит от $x$. Отсюда получаем:
$$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = A+\frac{\overline{o} (x − x_0)}{x-x_0}.$$
Тогда, учитывая определение символа $\overline{o}$, имеем
$$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}=A+\lim_{x\to x_0} \frac{\overline{o} (x − x_0)}{(x − x_0)} =A$$ т. е. существует $f^\prime(x_0) = A.$
Обратно, если существует $$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f^\prime(x_0),$$ то $$ \displaystyle \frac{f(x)-f(x_0)}{x-x_0} + f^\prime(x_0) = r_1(x),$$ где $r_1(x) \to 0 (x \to x_0)$. Отсюда следует, что $$ f(x) — f(x_0) = f^\prime(x_0)(x-x_0)+r_1(x)(x-x_0).$$ Обозначим $r(x)=r_1(x)(x-x_0).$ Тогда $r(x)=\overline{o}(x-x_0),$ т. е. $$ f(x) − f (x_0) = f^\prime(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0), $$ а это и означает, что $f$ дифференцируема в точке $x_0$, причем $A= f^\prime(x_0).$

Итак, условие дифференцируемости равносильно наличию производной. Смысл дифференцируемости состоит в том, что в некоторой окрестности точки $x_0$ функция $f$ представима в виде линейной функции $l(x)= f (x_0)+f (x_0) f^\prime(x-x_0)$ приближенно с точностью до величины бесконечно малой более высокого порядка, чем $(x-x_0) $ при $x\to x_0.$

Связь между дифференцируемостью и непрерывностью устанавливает следующая

Теорема. Если функция $f$ дифференцируема в точке $x_0$, то она непрерывна в этой точке.

Дифференцируемость $f$ означает, что
$$ f(x) − f (x_0) = A(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0). $$
Отсюда следует, что $\displaystyle \lim_{x\to x_0} (f(x)-f(x_0)) = 0$, т. е. $\displaystyle \lim_{x\to x_0} f(x)=f(x_0)$, и тем самым теорема доказана.

Обратное утверждение неверно. Именно из непрерывности функции $f$ не следует ее дифференцируемость. Примером может служить функция $f(x)=|x|,$ непрерывная в точке $x_0 = 0$, для которой выражение $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = \frac{|x|}{x} = \sign x $$ не имеет предела $x\to 0$ и, следовательно, функция $f$ не имеет производной в точке $x_0 = 0$. Значит, $ f$ не является дифференцируемой в нуле.

Итак, непрерывность – это необходимое, но не достаточное условие дифференцируемости. Другими словами, если функция разрывна в точке $x_0$, то она недифференцируема в этой точке. Обратное неверно.

С геометрической точки зрения производная $f^\prime(x_0)$ представляет собой тангенс угла наклона касательной к графику функции $y = f(x)$ в точке $M_0(x_0, f (x_0))$. При этом касательной к графику функции $f$ в точке $M_0$ называется предельное положение секущей $M_0M$ при стремлении точки $M (x, f(x))$ вдоль кривой $y = f(x)$ к точке $M_0$. В самом деле, если функция  $f$ дифференцируема в точке $x_0$, то при стремлении $M$ к $M_0$ вдоль кривой $y = f(x)$ секущая $M_0M$ имеет тангенс угла наклона, равный $$ \displaystyle \tg\alpha(x) = \frac{f(x)-f(x_0)}{x-x_0}, $$ и при $ x \rightarrow x_0 $ точка $M$ стремится к $M_0$ вдоль кривой $y = f(x)$. Так как $$\displaystyle  \frac{f(x)-f(x_0)}{x-x_0} \to f^\prime(x_0)  \: \: \: (x\to x_0), $$ то $\tg\alpha(x) \to f^\prime(x_0) $ при $x\to x_0$, т. е. секущая стремится занять некоторое предельное положение, тангенс угла наклона $\alpha_0$ которого равен $f^\prime(x_0)$.Отсюда получаем уравнение касательной к графику дифференцируемой в точке $x_0$ функции $y = f(x):$ $$k(x)=f(x_0)+f^\prime(x_0) (x-x_0).$$

Примеры решения задач

  1. Найти производную $f(x) = \sin x $ в точке $x_0 = 0.$
    Решение

    Пример можно легко решить, пользуясь определением производной, а так же первым замечательным пределом:
    $ \displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}= \lim_{x\to 0} \frac{\sin x — \sin 0}{x-0}=\lim_{x\to 0} \frac{\sin x }{x}=1.$

  2. Пусть $f(x) = x^{2}$ Тогда производная $f^\prime(x_0)$ равна?
    Решение

    $\displaystyle f^\prime(x_0) = \lim_{x\to x_0} \frac{x^2-x^2_0}{x-x_0} = \lim_{x\to x_0} \frac{(x-x_0)(x+x_0)}{x-x_0}=$
    $\displaystyle = \lim_{x\to x_0} (x+x_0) = 2x_0$

  3. Пусть $f(x) = \left|x \right |$ и если $x_0 \neq 0$ существует ли $f^\prime(x_0)$?
    Решение

    $f^\prime(x_0) = \sgn x_0$, где $\sgn$ обозначает функцию знака. А если $x_0 = 0$ $f^\prime_+(x_0)=1,$ $f^\prime_-(x_0)=-1,$ а следовательно $f^\prime(x_0)$ не существует.

  4. Найдите уравнение касательной к графику функции $y=e^{2x-3}$ в точке $x_0 = 5,$ а также угол наклона касательной в этой точке.
    Решение

    Известно, что уравнение касательной в точке имеет вид $l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right),$ причём ${f}’\left(x_{0}\right)=\mathrm{tg}\alpha,$ где $\alpha$ — угол наклона касательной.
    Находим значение касательной в точке 5, получаем ${f}^\prime\left(x\right)=2e^{2x-3},$ а в точке $x_{0}=5: \, {f}^\prime\left(5\right)=2e^{7} \Rightarrow$ $l = e^{7}+2e^{7}\left(x-5\right) =$
    $ -9e^{7}+2e^{7}x$, $\alpha = \mathrm{arctg}\left(2e^{7}\right).$

  5. Найдите по определению $\sin x.$ на множестве $\mathbb{R}$
    Решение

    Воспользуемся определением производной $(\sin x)^\prime:$
    $
    (\sin x)^\prime = \displaystyle \lim_{\Delta x\to 0} \frac{\sin(x+\Delta x)-\sin x}{\Delta x} = \\
    = \displaystyle \frac{2\sin \frac{\Delta x}{2}\cdot \cos(x+\frac{\Delta x}{2})}{\Delta x} = \\
    = \displaystyle \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos(x+\frac{\Delta x}{2})
    $
    Теперь сделаем подстановку $ \displaystyle \frac{\Delta x}{2} = t$ . При $\Delta x \to 0, $ $t \to 0.$ Применим первый замечательный предел:
    $ \displaystyle \lim_{\Delta x\to 0} \frac { \sin \frac{\Delta x}2}{\frac{\Delta x}2} = \lim_{t\to 0} \frac{\sin t}{t} = 1.$
    Сделаем такую же подстановку $\displaystyle \frac{\Delta x}{2} = t$ и используем свойство непрерывности:
    $\displaystyle \lim_{\Delta x\to 0} \left ( \cos x + \frac{\Delta x}{2} \right) = \lim_{t\to 0} \cos (x+t)= \cos x.$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — с. 123-133.
  2. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — с. 186-214.
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.271-280.

Дифференцируемость и производная

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Дифференцируемость и производная».