Будем называть декартовой плоскостью $\mathbb{R}^2$ множество всех упорядоченных пар действительных чисел $(x,y)$. Элементы $\mathbb{R}^2$ называют точками, а числа $x,y$ – координатами этих точек.
Пусть $a\leqslant b,c\leqslant d$. Множество всех точек, координаты $(x,y)$ которых удовлеворяют неравенствам $a\leqslant x\leqslant b,c\leqslant y\leqslant d$, будем называть прямоугольником и обозначать $[a,b;c,d]$. Стороны прямоугольника параллельны координатным осям. Если $a=b$ или $c=d$, то прямоугольник $[a,b;c,d]$ называется вырожденным.
Множество всех точек $(x,y)$ , удовлетворяющих неравенствам $a< x< b, c< y< d$, называют внутренностью прямоугольника.
Площадью (или мерой) прямоугольника $I\equiv [a,b;c,d]$ называется произведение длин его сторон, т.е. $m(I)=(d−c)(b−a)$.
Фигурой (или элементарным множеством) назовем такое множество на плоскости, которое можно представить в виде объединения конечного числа прямоугольников. Фигура называется вырожденной, если она может быть представлена в виде конечного объединения вырожденных прямоугольников.
Предложение. Каждую фигуру можно разбить на конечное число прямоугольников с попарно непересекающимися внутренностями.
Это предложение принимаем без доказательства.
Определение. Пусть фигура $X$ является объединением прямоугольников $I_{1},\dots ,I_{n}$, у которых внутренности попарно не пересекаются. Тогда мерой фигуры $X$ называется
$$m(X) = \sum_{k=1}^{n}m(I_{k}).$$
Нетрудно показать, что данное определение меры не зависит от способа разбиения этой фигуры на прямоугольники с попарно непересекающимися внутренностями. Ясно, что мера вырожденной фигуры равна нулю.
Пусть теперь $E$ – произвольное множество на плоскости, которое содержится в некотором прямоугольнике, т.е. ограниченное.Число $$m^*(E) = \inf_{X\supset E}m(X),$$ где нижняя грань берется по всевозможным фигурам $X$, содержащим множество $E$, называется внешней мерой Жордана множества $E$. Далее, число $$m_{*}(E) = \sup_{X\subset E}m(X),$$ где верхняя грань берется по всевозможным фигурам $X$, содержащимся во множестве $E$, называется внутренней мерой Жордана множества $E$.
Нетрудно показать, что если фигуры $X$ и $Y$ таковы, что $X\subset Y$, то $m(X) \leqslant m(Y)$. Отсюда сразу следует, что для любого ограниченного множества $E$ справедливо неравенство $m_{∗}(E)\leqslant m^*(E).$
Определение. Если внутренняя мера множества $E$ равна его внешней мере, то множество $E$ называется измеримым по Жордану или квадрируемым. В этом случае общее значение внешней и внутренней мер называется мерой Жордана множества $E$ и обозначается $m(E).$
Пусть $E$ – множество всех точек из единичного квадрата $[0,1;0,1]$, у которых обе координаты рациональны. Это множество не содержит ни одной невырожденной фигуры, т.к. в каждом невырожденном прямоугольнике существуют точки с иррациональными координатами. Значит, $m_{∗}(E)=0.$ С другой стороны, нетрудно показать, что любая фигура, содержащая множество $E$, содержит также единичный квадрат. Поэтому $m^∗(E)=1.$ Таким образом, $m_{∗}(E)< m^∗(E)$, так что множество $E$ неизмеримо по Жордану.
Определение. Пусть $f$ – неотрицательная функция на отрезке $[a,b].$ Подграфиком функции $f$ будем называть множество $E_{f}$ всех точек $(x,y)$, координаты которых удовлетворяют неравенствам $a\leqslant x\leqslant b,0\leqslant y\leqslant f(x).$
Теорема. Пусть функция $f$ неотрицательна и интегрируема на отрезке $[a,b].$ Тогда ее подграфик $E_{f}$ измерим и $$m(E_{f}) = \int \limits_{a}^{b} f(x)dx.$$
Возьмем разбиение $a = x_{0} < x_{1} < \dots < x_{n} = b$ отрезка $[a,b]$ и обозначим $$m_{i} = \inf_{x\in [x_{i},x_{i+1}]}f(x),\;\;\;\;\;\;\; M_{i} = \sup_{x\in [x_{i},x_{i+1}]}f(x).$$
Далее пусть
$$\underline \Delta_{i} = [x_{i},x_{i+1};0,m_{i}],$$ $$\overline{\Delta_{i}} = [x_{i},x_{i+1};0,M_{i}],$$ $$\underline X=\bigcup_{i=0}^{n-1}\underline \Delta_{i},$$ $$\overline{X}=\bigcup_{i=0}^{n-1}\overline{\Delta_{i}}.$$
Тогда, по определению меры фигуры, имеем $$m(\underline X)=\sum_{i=0}^{n-1}m(\underline\Delta_{i})=\sum_{i=0}^{n-1}m_{i}\Delta x_{i}=\underline S ,$$
где $\underline S$ – нижняя сумма Дарбу функции $f$, соответствующая выбранному разбиению. Аналогично получаем, что $m(\overline X)=\overline S,$ где $\overline S$ – верхняя сумма Дарбу.
Поскольку функция $f$ интегрируема, то $\overline S — \underline S\rightarrow 0$ вместе с диаметром разбиения. Следовательно, для любого $\varepsilon >0$ найдется такое $\delta >0$, что для любого разбиения диаметра, меньшего, чем $\delta$, справедливо неравенство $\overline S — \underline S < \varepsilon$. Значит, $m(\overline X)−m(\underline X) < \varepsilon$. Заметим, что $\underline X\subset E_{f} \subset \overline X$. Поэтому $m(\underline X) \leqslant m_{*}(E_{f}) \leqslant m^*(E_{f}) \leqslant m(\overline X)$. Отсюда следует $m^*(E_{f})-m_{*}(E_{f}) <\varepsilon$, а значит, $m_{∗}(E_{f})$ и $m^∗(E_{f})$ равны. Это означает, что множество $E_{f}$ измеримо. Кроме того, из неравенств $\underline S \leqslant m(E_{f})\leqslant \overline S$ и из того, что $\displaystyle \overline S - \underline S\rightarrow 0$ и $\displaystyle \overline S \rightarrow \int\limits_{a}^{b} f(x)dx,$ $\displaystyle \underline S \rightarrow \int\limits_{a}^{b} f(x)dx$, вытекает, что $\displaystyle m(E_{f})=\int\limits_{a}^{b} f(x)dx$.
Примеры решения задач
Данные примеры читателю рекомендуется решить самому в качестве тренировки.
- Вычислить площадь фигуры, ограниченной линиями $y=x^2+2,$ $y=0,$ $x=-2,$ $x=1$.
- Вычислить площадь фигуры, ограниченной линиями $\displaystyle y=\frac{2}{x},$ $y=x+1,$ $y=0,$ $x=3.$
Решение
Фигура, площадь которой нам нужно найти, зарисована серым цветом.
Этот пример полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов:
- На отрезке $[-1;1]$ над осью $Ox$ расположен график прямой $y=x+1$;
- На отрезке $[1;3]$ над осью $Ox$ расположен график гиперболы $\displaystyle y=\frac{2}{x}$.
Понятно, что площади нужно сложить, поэтому:
$$S=\int\limits_{-1}^{1}(x+1)dx+\int\limits_{1}^{3}\frac{2dx}{x}=$$
$$=\left ( \frac{x^2}{2} +x\right )\bigg|_{-1}^1 +2(\ln x)\bigg|_{1}^3=$$
$$=\frac{1}{2}+1-\left ( \frac{1}{2}-1 \right ) +2(\ln3- \ln 1)=$$
$$=\frac{1}{2}+1-\frac{1}{2}+1+2(\ln3-0)=2+2\ln3=2(1+\ln3)$$Ответ: $S=2(1+\ln3).$
- Найти площадь множества, ограниченного линиями $y=x^2+1,$ $x+y=3.$
Решение
Найдем абсциссы точек пересечения графиков
$$\left\{\begin{matrix}
y=x^2+1\\
y=3-x
\end{matrix}\right.$$Решая эту систему, находим $x_{1}=-2,$ $x_{2}=1.$ Поэтому
$$S=\int\limits_{-2}^{1}(3-x)dx-\int\limits_{-2}^{1}(x^2+1)dx=$$
$$=9-\frac{x^2}{2}\bigg|_{-2}^1-\left ( \frac{x^3}{3}+x \right )\bigg|_{-2}^1=$$
$$=9-\frac{1}{2}+2-\frac{4}{3}-\frac{8}{3}-2=4.5$$Ответ: $S=4.5.$
- Найти площадь круга $x^2+y^2 \leqslant R^2$.
Решение
Верхняя полуокружность задается уравнением $y=\sqrt{R^2-x^2},$ $-R \leqslant x \leqslant R.$ Поэтому площадь верхнего полукруга равна
$$S=\int\limits_{-R}^{R}\sqrt{R^2-x^2}dx=2\int\limits_{0}^{R}\sqrt{R^2-x^2}dx=$$
$$=[x=Rz]=2R^2\int\limits_{0}^{1}\sqrt{1-z^2}dz=\frac{\pi R^2}{2},$$
а значит, площадь всего круга равна $\pi R^2.$Ответ: $S=\pi R^2.$
Вычисление площадей
Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Вычисление площадей».
См. также:
4.6 Свойство промежуточных значений
Теорема Больцано – Коши (о корне). Пусть функция $f$ непрерывна на отрезке $\left[a, b\right]$ и на концах этого отрезка принимает значения разных знаков. Тогда существует точка $c \in \left(a, b\right)$, такая, что $f\left(c\right) = 0$.
Применяем метод деления отрезка пополам и лемму Кантора о вложенных отрезках. Пусть, например, $f\left(a\right)<0<f\left(b\right)$. Обозначим $\left[a_0, b_0\right] \equiv \left[a, b\right]$ и разделим $\left[a_0, b_0\right]$ пополам точкой $c_0 =\displaystyle\frac{a_0+b_0}{2}$. Если $f\left(c_0\right) = 0$, то теорема доказана. В противном случае из двух полученных отрезков $\left[a_0, c_0\right]$ и $\left[c_0, b_0\right]$ выберем такой, что на его концах функция f принимает значения разных знаков. Это будет отрезок $\left[a_1, b_1\right] \equiv \left[a_0, b_0\right]$, если $f \left(c_0\right) > 0$, и $\left[a_1, b_1\right] \equiv \left[c_0, b_0\right]$, если $f \left(c_0\right) < 0$. Заметим, что длина отрезка$\left[a_1, b_1\right]$ равна $b_1 − a_1$ = $\displaystyle\frac{b-a}{2}$. На следующем шаге разделим $\left[a_1, b_1\right]$ пополам и продолжим описанную процедуру. Если на каком-либо шаге встретится точка деления, в которой функция $f$ обращается в нуль, то теорема доказана. В противном случае получим последовательность вложенных друг в друга отрезков $\left[a_n, b_n\right]$, таких, что их длины $b_n − a_n =\displaystyle\frac{b−a}{2^n} \rightarrow 0 \;при\; n \to \infty$. По лемме Кантора, существует точка c, принадлежащая всем $\left[a_n, b_n\right]$. Покажем, что $f\left(c\right) = 0$. Отсюда, в частности, будет следовать, что $c$ не совпадает ни $с\;a$, ни $с\;b$, т. к. $f\left(a\right) \neq 0$ и $f\left(b\right) \neq 0$.
Для доказательства равенства $f\left(c\right) = 0$ покажем, что для всех $n$ справедливо неравенство
$$\begin{equation}\label{eq:exp1}f \left(a_n\right) < 0 < f \left(b_n\right)\end{equation}.$$
Применим индукцию по $n$. При $n = 0$ неравенство $\eqref{eq:exp1}$ совпадает с принятым условием $f\left(a\right)<0<f\left(b\right)$. Предположим, что неравенство $\eqref{eq:exp1}$ справедливо при некотором $n$, и покажем, что оно имеет место и для $n + 1$. Обозначим $c_n =\displaystyle\frac{a_n+b_n}{2}$. Тогда, согласно описанной процедуре отбора сегментов, мы полагаем $\left[a_n+1, b_n+1\right] \equiv \left[a_n, c_n\right]$, если $f \left(c_n\right) > 0$, и $\left[a_n+1, b_n+1\right] \equiv \left[c_n, b_n\right]$, если $f \left(c_n\right) < 0$. Отсюда легко видеть, что неравенство $\left(4.5\right)$ справедливо и при $n + 1$, и тем самым $\eqref{eq:exp1}$ доказано для всех $n = 0, 1, \dotsc.$
Далее, поскольку $a_n \leqslant c \leqslant b_n \left ( n = 0, 1, \dotsc\right )$ и $b_n − a_n \rightarrow 0 \left(n \to \infty \right)$, то $a_n \rightarrow c \left(n \to \infty \right)$ и $b_n \rightarrow c \left(n \to \infty \right)$. В силу непрерывности функции $f$ в точке $c$, из неравенств $f\left(a_n\right) < 0$ следует, что и $f\left ( c\right ) = \lim_\limits{n \to \infty}f \left(a_n\right) \leqslant 0$.
С другой стороны, поскольку $f \left(b_n\right) > 0$, то и $f\left ( c\right ) = \lim_\limits{n \to \infty}f \left(b_n\right) \leqslant 0$.
Итак, получили, что $f\left(c\right) \leqslant 0$ и $f(c) \geqslant 0$. Отсюда следует, что $f\left(c\right) = 0$.
Следствие (свойство промежуточных значений). Пусть функция $f$ непрерывна на отрезке $\left[a, b\right]$. Тогда функция $f$ принимает все значения, заключенные между $f\left(a\right)$ и $f\left(b\right)$. Именно, для любого числа $A$, заключенного между $f\left(a\right)$ и $f\left(b\right)$, найдется такая точка $c \in \left[a, b\right]$, что $f\left(c\right) = A$.
Для доказательства этого следствия достаточно применить теорему Больцано – Коши к функции $g\left(x\right) = f\left(x\right) − A$.
Утверждение, обратное данному следствию, неверно. В этом легко убедиться на примере функции $$\left\{\begin{matrix}
x, x\in\mathbb{Q}\cap \left[0,1\right]\\
1-x, x \in \left[0,1\right] \setminus \mathbb{Q}
\end{matrix}\right.$$Если же функция $f$ монотонна на $\left[a, b\right]$, то, как показывает теорема $3$, данное следствие можно обратить. Таким образом, из теоремы $3$ и свойства промежуточных значений мы получаем следующий критерий непрерывности монотонной функции.
Теорема. Монотонная на отрезке $\left[a, b\right]$ функция $f$ непрерывна на этом отрезке тогда и только тогда, когда она принимает все промежуточные значения между $f\left(a\right)$ и $f\left(b\right)$.
Пример. Покажем, что каждый многочлен нечетной степени имеет по крайней мере один действительный корень. Пусть $P_{2k+1}\left(x\right) = a_0x^{2k+1} + a_1x^{2k} + \cdots + a_{2k+1}$, причем можем считать, что $a_0 > 0$. Тогда, очевидно, $\lim_\limits{x\to-\infty }P_{2k+1}\left(x\right ) = -\infty$, а значит, существует такое $a$, что $P_{2k+1}\left(a\right ) < 0$. Далее, поскольку $\lim_\limits{x\to+\infty }P_{2k+1}\left(x\right ) = +\infty$,то найдется такое $b > a$, что $P_{2k+1}\left(a\right ) > 0$. Поскольку многочлен $P_{2k+1}$ непрерывен на $\left[a, b\right]$, то, в силу теоремы Больцано-Коши, найдется такое $c \in \left(a,b\right)$, что $P_{2k+1}\left(c\right ) =0$.
- Пусть функция $f(x)=x^{2}$ определенна и непрерывна на отрезке $[-2,2]$.
Посчитаем значение функции в точках: $x=-0,75$, $x=0,25$, $x=1,5$.Решение
Мы знаем что данная функция непрерывна на данном отрезке (в силу того что это полиномиальная функция), а значит, в силу второй теоремы Коши, она принимает все свои промежуточные значения и ее значения в указанных точках равны:
$f(-0,75)=0,5625$, $f(0,25)=0,0625$, $f(1,5)=2,25$. - Докажите, что многочлен нечетной степени всегда имеет корень.
Указание. Представьте многочлен $p\left(x\right)=a_nx^n+a_{n−1}x^{n−1}+\cdots+a_1x+a_0$ в виде $p\left(x\right)=x^n\left(a_n+\displaystyle\frac{a_{n−1}}{x}+\displaystyle\frac{a_{n−2}}{x^2}+\cdots+\displaystyle\frac{a_1}x^{n−1}+\displaystyle\frac{a_0}{x^n}\right)$ и покажите, что при $x$, больших по модулю, он принимает как положительные, так и отрицательные значения.Решение
Без ограничений общности $a_n > 0$. $\lim_\limits{x\to+\infty}\left(x^n\left(a_n+\cdots+\displaystyle\frac{a_0}{x^n}\right)\right)$ — есть величина положительная.Если устремить $x$ в минус бесконечность,то $p\left(x\right)$. Есть величина отрицательная. Значит можем выбрать точки $a,b$(большие по модулю и $a_0$) такие, что $p\left(a\right)0$
Многочлен нечетной степени есть непрерывная функция.
По теореме Больцано-Коши существует $c\in\left[a,b\right]$
такая, что $p\left(c\right) = 0$
Значит как минимум один корень есть.
Смотрите также
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр.134, 171)
- Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр.216)
Свойство промежуточных значений
Пройдя этот тест, вы закрепите пройденный ранее материал по теме «Свойство промежуточных значений»
7.1 Определение и элементарные свойства интеграла Римана
В каждом из частичных отрезков $ [x_i, x_{i+1}] $ выберем произвольным образом точку $\xi_i$ и составим сумму $$ \sigma = \sum\limits_{i=0}^{n-1} f (\xi_i) \Delta x_i.$$
Сумма $\sigma$ называется интегральной суммой для функции $f,$ соответствующей заданному разбиению $\Pi $ и заданному выбору точек $\xi_i .$
Для каждого заданного разбиения множество всевозможных интегральных сумм бесконечно, поскольку каждая интегральная сумма зависит от способа выбора точек $\xi_i .$
Итак, $$ \int\limits_a^b\! f(x)\,dx = \underset {d(\Pi) \to 0}{\lim} \sigma .$$
Геометрический смысл определенного интеграла.
С геометрической точки зрения интегральная сумма представляет собой сумму площадей прямоугольников высотой $f (\xi_i)$ и шириной $x_{i+1}-x_i.$
Поэтому определенный интеграл – предел интегральных сумм при стремлении к нулю диаметра разбиения – можно интерпретировать как площадь (с учетом знака) криволинейной трапеции, ограниченной осью $Ox,$ прямыми $x = a, x = b$ и графиком функции $y = f(x).$
По аналогии с определением предела функции в смысле Гейне, определение предела интегральных сумм можно выразить в терминах последовательностей следующим образом.
Упражнение. Докажите равносильность этих двух определений предела интегральных сумм.
Теорема. Если функция $f$ интегрируема на отрезке $[a, b],$ то она ограничена на этом отрезке.
Предположим, что функция $f$ неограничена на $[a, b],$ и покажем, что в этом случае для любого разбиения $\Pi$ промежуточные точки $\xi_i$ можно выбрать так, чтобы модуль соответствующей интегральной суммы оказался большим любого наперед заданного числа. Рассмотрим произвольное разбиение $\Pi : a = x_0 < x_1 < \ldots < x_n = b.$ Если $f$ неограничена на $[a, b],$ то найдется такой частичный отрезок $[x_j , x_{j+1}],$ на котором $f$ также неограничена. Действительно, если бы $f$ оказалась ограниченной на каждом из частичных отрезков, то она была бы ограниченной и на всем отрезке $[a, b].$ Итак, предположим, что $f$ неограничена сверху на $[x_j , x_{j+1}].$ Зададим произвольное число $M$ и покажем, что точки $\xi_i$ можно выбрать так, чтобы соответствующая интегральная сумма $\sigma$ стала большей, чем $M.$ Действительно, сначала выберем точки $\xi_i$ во всех отрезках, кроме $[x_j , x_{j+1}],$ и составим сумму $\displaystyle\sigma^\prime = \sum\limits_{i:i\neq j}$ $f(\xi_i) \Delta x_i.$ Затем точку $\xi_j$ выберем так, чтобы выполнялось неравенство $f(\xi_j ) \Delta x_j + \sigma^\prime > M.$ Это возможно в силу того, что функция $f$ неограничена сверху на $[a, b].$ Тогда получим, что для интегральной суммы $\sigma = \sigma^\prime + f(\xi_j ) \Delta x_j$ выполнено неравенство $\sigma > M.$
Случай неограниченной снизу $f$ исчерпывается аналогичным образом.
Наконец заметим, что из определения предела интегральных сумм вытекает, что при достаточно мелком разбиении интегральные суммы ограничены независимо от способа выбора промежуточных точек. Действительно, в определении предела условие $d(\Pi) < \delta$ влечет выполнение неравенства $|\sigma−I| < \varepsilon,$ откуда следует, что $|\sigma| < |I|+ \varepsilon.$ Мы же, предположив, что функция $f$ неограничена на $[a, b],$ получаем противоречие с ограниченностью интегральных сумм.
Итак, каждая интегрируемая функция ограничена. Однако не каждая ограниченная функция интегрируема.
Пример ограниченной неинтегрируемой функции.
Рассмотрим функцию Дирихле $$\begin{equation*}
\mathcal{D}\left(x\right) =
\begin{cases}
1, &\text{x — рационально,}\\
0, &\text{x — иррационально.}
\end{cases}
\end{equation*} $$
Эта функция ограничена. Покажем, что она неинтегрируема на любом невырожденном отрезке $[a, b].$ Действительно, если для произвольного разбиения $\Pi$ все точки $\xi_i$ выбрать рациональными, то получим $$ \sigma = \sum\limits_{i=0}^{n-1} \mathcal {D}(\xi_i) \Delta x_i = \sum\limits_{i=0}^{n-1} \Delta x_i = b-a.$$ Если же все точки $\xi_i$ взять иррациональными, то $$ \sigma = \sum\limits_{i=0}^{n-1} \mathcal {D}(\xi_i) \Delta x_i = 0. $$ Отсюда следует, что интегральные суммы не имеют предела при стремлении к нулю диаметра разбиения.
Пример 1.
Пусть $f(x) = c,$ $a \leqslant x \leqslant b.$ Тогда для любого разбиения $\Pi$ при любом выборе точек $\xi_i$ будет $f(\xi_i) = c$ и поэтому $$\sigma = \sum\limits_{i=0}^{n-1} f(\xi_i)\Delta x_i = c \sum\limits_{i=0}^{n-1} \Delta x_i = c (b-a).$$ Таким образом, $ \displaystyle\int\limits_{a}^{b}\! c\,dx = c (b-a).$
Пример 2.
Пусть $f(x) = x, 0 \leqslant x \leqslant 1.$ Выберем произвольное разбиение $\Pi : 0 = x_0 < x_1 < \ldots < x_n = 1$ и точки $\xi_i \in [x_i, x_{i+1}].$ Тогда
соответствующая интегральная сумма будет иметь вид $\displaystyle\sigma = \sum\limits_{i=0}^{n-1} \xi_i \Delta x_i.$ Наибольшая из всех интегральных сумм, соответствующая выбранному разбиению, равна $\displaystyle\overline \sigma = \sum\limits_{i=0}^{n-1} x_{i+1} \Delta x_i,$ а наименьшая $\displaystyle\underline \sigma = \sum\limits_{i=0}^{n-1} x_i \Delta x_i.$ Тогда имеем $$\overline {\sigma} + \underline \sigma = \sum_{i=0}^{n-1}(x_{i+1}+x_i) \Delta x_i = \sum\limits_{i=0}^{n-1}(x_{i+1}^2 — x_{i}^2)$$ $$\overline {\sigma}-\underline \sigma = \sum\limits_{i=0}^{n-1}(x_{i+1}+x_i) \Delta x_i \leqslant d(\Pi) \sum\limits_{i=0}^{n-1} \Delta x_i = d(\Pi).$$ Таким образом, $\overline \sigma −\underline \sigma \to 0$ при $d(\Pi) \to 0,$ а поскольку $\underline \sigma + \overline \sigma = 1,$ то обе эти суммы стремятся к $\displaystyle\frac {1}{2}.$ Отсюда и из неравенства $\underline \sigma \leqslant \sigma \leqslant \overline \sigma$ сразу следует, что $\displaystyle\sigma \to \frac{1}{2}$ при $d(\Pi) \to 0.$ Итак, функция интегрируема и $\displaystyle\int\limits_{0}^{1} \!x\,dx = \frac{1}{2}.$
Пример 3. Ступенчатые функции.
Функция $f$ называется ступенчатой
на отрезке $[a, b],$ если $[a, b]$ можно разбить на отрезки $[a_0, a_1], \ldots ,[a_{s−1}, a_s],$ где $a = a_0 < a_1 < \ldots < a_s = b,$ такие, что функция $f$ постоянна на каждом интервале $(a_j , a_{j+1}),$ т. е. $f(x) = c_j,$ $x \in (a_j , a_{j+1}),$ $j = 0, 1, \ldots , s − 1.$ При достаточно малых $\delta$ для разбиения $\Pi : a = x_0 < x_1 < \ldots < x_n = b,$ диаметр которого меньше, чем $\delta,$ все частичные отрезки разбиения, за исключением, быть может, не более чем $2s$ штук, расположены целиком в соответствующих интервалах постоянства функции $f.$ Пусть разбиению $\Pi$ при каком-либо выборе промежуточных точек $\xi_j$ соответствует интегральная сумма $\sigma.$ Имеем $$\left|\sigma-\sum\limits_{j=0}^{s-1} c_j (a_{j+1}-a_j)\right| \leqslant 2s \cdot \delta \cdot \left[\underset{a\leqslant x\leqslant b}{\mathrm{\max}} f(x)-\underset{a\leqslant x\leqslant b}{\mathrm{\min}} f(x)\right].$$ Отсюда ясно, что при стремлении к нулю диаметра разбиения интегральные суммы стремятся к $\displaystyle\sum\limits_{j=0}^{s-1} c_j (a_{j+1}-a_j),$ т.е. $\displaystyle\int\limits_{a}^{b} \!f(x)\,dx = \sum\limits_{j=0}^{s-1} c_j (a_{j+1}-a_j).$
Пример 4. Функция Римана.
Напомним, что функция Римана определяется равенством $$\begin{equation*}
\mathcal{R}\left(x\right) =
\begin{cases}
0, &\text{x — рационально,}\\
\displaystyle\frac{1}{q}, &\text{где x = $\displaystyle\frac{p}{q}$ — несократимая дробь.}
\end{cases}
\end{equation*} $$ Покажем, что эта функция интегрируема на $[0, 1]$ и ее интеграл равен нулю. Для этого заметим, что для любого $x \in [0, 1]$ имеем $\lim\limits_{y \to x} \mathcal{R}(y) = 0.$ Действительно, это сразу следует из того, что при любом фиксированном $\varepsilon > 0$ на отрезке $[0, 1]$ существует лишь конечное число таких точек, в которых функция Римана принимает значения большие, чем $\varepsilon.$ Обозначим число таких точек через $N_\varepsilon.$ Зафиксируем $\varepsilon > 0$ и положим $\displaystyle ε^\prime = \frac {\varepsilon}{2},$ $\displaystyle\delta = \frac{\varepsilon^{\prime}}{2N_{\varepsilon^\prime}}.$ Тогда при любом разбиении $\Pi,$ диаметр которого меньше, чем $\delta,$ и при любом способе выбора промежуточных точек количество слагаемых в интегральной сумме, для которых значение функции больше, чем $\varepsilon^\prime,$ не превосходит $2N_{\varepsilon^\prime}.$ Поэтому для интегральной суммы σ справедлива следующая оценка: $$\sigma \leqslant N_{\varepsilon^{\prime}}\delta + \varepsilon^\prime \sum\limits_{i=0}^{n-1} \Delta x_i \leqslant N_{\varepsilon^{\prime}} \frac{\varepsilon^{\prime}}{2N_{\varepsilon^\prime}} = \varepsilon.$$ Таким образом, получили, что $\sigma \to 0$ при $d(\Pi) \to 0,$ т. е. $\displaystyle\int\limits_{0}^{1}\! \mathcal{R}(x)\,dx = 0.$
Примеры решения задач
Данные примеры читателю рекомендуется решить самому в качестве тренировки.
- Исходя из определения определенного интеграла, найти $\displaystyle\int\limits_{0}^{T} (v_0 + gt)\,dt,$ где $v_o$ и $g$ — постоянны.
Решение
Рассмотрим разбиение отрезка $[0; T]$ на $n$ равных частей точками $\displaystyle\mathcal{T}_i = \frac {T_i}{n}$ $0 \leqslant i \leqslant n.$ Выберем точки разметки на левых концах отрезков разбиения: $\xi_i = \mathcal{T}_i.$ Интегральная сумма для функции $f(t) = v_0+gt$ равна: $$S_n=\sum\limits^{n-1}_{i=0}(v_0 + g\xi_i)(\mathcal{T}_{i+1}-\mathcal{T}_i)=\sum\limits^{n-1}_{i=0}\left(v_0 + g\frac{T_i}{n}\right)\frac{T}{n} = \frac{T}{n}\left(v_0n + \frac{gT}{n}\sum\limits^{n-1}_{i=0}\right).$$ По формуле суммы арифметической прогрессии $\displaystyle\sum\limits^{n-1}_{i=0}i = \frac{(n-1)n}{2},$ следовательно, $$S_n = \frac{T}{n}\left(v_0n + \frac{gT(n-1)n}{2n}\right) = v_0T + \frac {gT^2(n-1)}{2n}.$$ Сведём вычисление интеграла к вычислению обычной последовательности. $$\int\limits^T_0 (v_0 + gt)\,dt = \lim_{n\to +\infty}\left(v_0T+\frac{gT^2(n-1)}{2n}\right)=v_0T+\frac{gT^2}{2}.$$
- Вычислить определенный интеграл, рассматривая его как предел соответствующих интегральных сумм и производя разбиение промежутка интеграции надлежащим образом: $\displaystyle\int\limits^1_0 a^x \,dx,$ $(a>0).$
Решение
Разобьем отрезок интегрирования на $n$ равных частей: $\displaystyle x_i=\frac{i}{n},$ $0 \leqslant i \leqslant$ n и выберем точки разметки $\xi_i = x_i (0 \leqslant i \leqslant n−1).$ Длина каждого из отрезков разбиения $\displaystyle\Delta x_i = x_{i+1}-x_i=\frac{1}{n}.$ Интегральная сумма $$S_n = \sum\limits_{i=0}^{n-1}a^{\xi_i} \Delta x_i = \frac{1}{n} \sum\limits_{i=0}^{n-1} a^{\frac{i}{n}} = \frac{1}{n} \sum\limits^{n-1}_{i=0}(a^{\frac{i}{n}})^i.$$ Суммируя геометрическую прогрессию с первым членом, равным 1, и знаменателем $q=a^{\frac{1}{n}},$ получаем $$\sum\limits^{n-1}_{i=0}(a^{\frac{1}{n}})^i = \frac{a-1}{a^{\frac{1}{n}}-1}$$ Отсюда следует, что $$S_n = \frac {a-1}{n(a^{\frac{1}{n}}-1)}$$ Так как при $n \to +\infty$ последовательность $\displaystyle a^{\frac{1}{n}}-1 \sim \frac{\ln a}{n},$ то $$\int\limits^1_0 a^x \,dx = \lim_{n\to +\infty} S_n = \lim_{n\to +\infty} \frac{(a-1)n}{n \ln a} = \frac{a-1}{\ln a}.$$
- Вычислить определенный интеграл, рассматривая его как предел соответствующих интегральных сумм и производя разбиение промежутка интеграции надлежащим образом: $\displaystyle\int\limits^b_a \frac{dx}{x^2},$ $(0 < a < b).$
Решение
Пусть $x_o, x_1, \ldots, x_n$ — произвольное разбиение отрезка $[a;b].$ Выберем точки разметки $\xi_i = \sqrt{x_ix_{i+1}}$ $(0 \leqslant i \leqslant n-1).$ Интегральная сумма $\displaystyle S_n = \sum\limits^{n-1}_{i=0} \frac{1}{\xi_{i}^{2}}(x_{i+1}-x_i)=\sum\limits^{n-1}_{i=0} \frac{1}{x_ix_{i+1}}(x_{i+1}-x_i)= \sum\limits^{n-1}_{i=0}\left(\frac{1}{x_i}-\frac{1}{x_{i+1}}\right)=$ $\displaystyle=\left(\frac{1}{x_0}-\frac{1}{x_1}\right)+\left(\frac{1}{x_1}-\frac{1}{x_2}\right)+\left(\frac{1}{x_2}-\frac{1}{x_3}\right)+\ldots+\left(\frac{1}{x_{n-1}}-\frac{1}{x_n}\right)=$ $=\displaystyle\frac{1}{x_0}-\frac{1}{x_n}=\frac{1}{a}-\frac{1}{b}.$ Отсюда получаем следующее: $$\int\limits_a^b \frac{dx}{x^2} = \lim_{n\to+\infty} S_n = \lim_{n\to+\infty}\left(\frac{1}{a}-\frac{1}{b}\right) = \frac{1}{a}-\frac{1}{b}.$$
Интеграл Римана
Данный тест поможет Вам разобраться с материалом по теме «Интеграл Римана».
Литература
- В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу» — Одесса: Астропринт, 2009, ч.1, стр. 176-181
Смотрите также
- Л. Д. Кудрявцев «Курс математического анализа» т.1. — М.: Дрофа; — 2003. — стр. 533-539
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970.- 800 с. — стр. 95-107.
- Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — стр. 316-334.
6.3 Интегрирование рациональных функций.
Рациональной функцией (или дробью) называется функция вида
$$f(x) = \displaystyle\frac{P(x)}{Q(x)},$$
где $P(x)$ и $Q(x)$ – многочлены. Если степень числителя меньше степени знаменателя, то рациональная дробь называется правильной. Ясно, что каждая рациональная дробь может быть представлена в виде
$$\displaystyle\frac{P(x)}{Q(x)} = R(x) + \displaystyle\frac{P_{1}(x)}{Q(x)},$$
где $R(x)$ – многочлен, а дробь $\displaystyle\frac{P_{1}(x)}{Q(x)}$ – правильная. Поскольку интегралы от многочленов вычисляются совсем просто, то мы будем рассматривать методы интегрирования правильных дробей.
Будем различать следующие четыре вида дробей:
- $\displaystyle\frac{A}{x-a}$, где $A$, $a$ — постоянные.
- $\displaystyle\frac{A}{(x-a)^k}$, где $A$, $a$ — постоянные, $k = 2,3 \ldots$
- $\displaystyle\frac{Mx + N}{x^2 + px + q}$, где $M$, $N$, $p$, $q$ – постоянные, квадратный трехчлен в знаменателе не имеет действительных корней.
- $\displaystyle\frac{Mx + N}{(x^2 + px + q)^k}$, где $M$, $N$, $p$, $q$ – постоянные, квадратный трехчлен в знаменателе не имеет действительных корней.
Покажем как вычисляются интегралы от каждой из этих дробей.
- $\int \displaystyle\frac{a}{x-a}dx = A\ln\left | x — a \right | + C$.
- $\int \displaystyle\frac{a}{(x-a)^k}dx = -\frac{A}{k-1}\cdot \displaystyle\frac{1}{(x-a)^{k-1}} + C$.
- $\int \displaystyle\frac{Mx + N}{x^2 + px + q}dx$. Для вычисления этого интеграла представим подынтегральное выражение в виде
$$\displaystyle\frac{Mx + N}{x^2 + px + q} = \displaystyle\frac{\frac{M}{2}(2x+p) + N — p\frac{M}{2}}{x^2 + px + q} = \displaystyle\frac{M}{2} \cdot \displaystyle\frac{2x+p}{x^2 + px + q} + \displaystyle\frac{N-p\displaystyle\frac{M}{2}}{x^2 + px + q}.$$
Для вычисления интеграла от первого слагаемого справа, очевидно, достаточно выполнить замену $t = x^2 + px + q$. Тогда получим
$$\int \displaystyle\frac{2x + p}{x^2 + px + q} = \ln(x^2 + px + q) + C.$$
Для вычисления интеграла от второго слагаемого справа выделим полный квадрат в знаменателе, т.е. представим знаменатель в виде $x^2 + px + q = (x+\displaystyle\frac{p}{2})^2 + q — \displaystyle\frac{p^2}{4}$. Поскольку квадратный трехчлен в знаменателе не имеет действительных корней, то его дискриминант $\displaystyle\frac{p^2}{4} — q < 0$. Обозначим $a^2 = q — \displaystyle\frac{p^2}{4}$. Выполняя замену $x + \displaystyle\frac{p}{2} = t$, получим
$$\int \displaystyle\frac{1}{x^2 + px + q}dx = \int \displaystyle\frac{1}{(x+\displaystyle\frac{p}{2})^2 + a^2}dx = \int \displaystyle\frac{dt}{t^2 + a^2} = \frac{1}{a^2} \int \displaystyle\frac{dt}{\displaystyle\frac{t^2}{a^2} + 1} =\\= \displaystyle\frac{1}{a} \int \displaystyle\frac{d(\displaystyle\frac{t}{a})}{(\displaystyle\frac{t}{a})^2 + 1} = \displaystyle\frac{1}{a} \text{arctg}\: \displaystyle\frac{t}{a} + C .$$
Возвращаясь теперь к старой переменной, получим исходный интеграл. - $\displaystyle\frac{Mx + N}{(x^2 + px + q)^k}$. Для вычисления этого интеграла, как и в предыдущем случае, представим подынтегральное выражение в виде
$$\displaystyle\frac{Mx + N}{(x^2 + px + q)^k} = \displaystyle\frac{\frac{M}{2}(2x + p) + N — p\displaystyle\frac{M}{2}}{(x^2 + px + q)^k} =\\=\displaystyle\frac{M}{2} \cdot \displaystyle\frac{2x+p}{(x^2 + px + q)^k} + \displaystyle\frac{N-p\frac{m}{2}}{(x^2 + px + q)^k}.$$
Для вычисления интеграла от первого слагаемого справа, очевидно, достаточно выполнить замену $t = x^2 + px + q.$ Тогда получим
$$\int \displaystyle\frac{2x + p}{(x^2 + px + q)^k}dx = \displaystyle\frac{1}{-k+1}(x^2+px+q)^{-k+1} +C.$$
Для вычисления интеграла от второго слагаемого, как и в предыдущем случае, выделим полный квадрат из квадратного трехчлена в знаменателе. Тогда после замены переменной $t = x+\displaystyle\frac{p}{2}$ он сведется к интегралу вида $\int \displaystyle\frac{dt}{(t^2+a^2)^k}$. Обозначим этот интеграл через $I_{k}$ и выведем рекуррентную формулу для вычисления этого интеграла. Будем применять формулу интегрирования по частям. Имеем
$$ I_{k} = \int \displaystyle\frac{dt}{(t^2 + a^2)^k} = \begin{bmatrix}u = \displaystyle\frac{1}{(t^2+a^2)^k}, & dv = dt \\ du = -\displaystyle\frac{2kt}{(t^2+a^2)^{k+1}}, & v = t \end{bmatrix} =\\=\displaystyle\frac{t}{(t^2 + a^2)^k} + 2k\int \displaystyle\frac{t^2}{(t^2 + a^2)^{k+1}}dt = \displaystyle\frac{t}{(t^2 + a^2)^k}+2k\int\displaystyle\frac{t^2 + a^2 — a^2}{(t^2 + a^2)^{k+1}}dt =\\= \displaystyle\frac{t}{(t^2 + a^2)^k} + 2k\int \displaystyle\frac{dt}{(t^2 + a^2)^k} — 2ka^2 \int \displaystyle\frac{dt}{(t^2 + a^2)^{k+1}} =\\= \displaystyle\frac{t}{(t^2 + a^2)^k} + 2kI_{k} — 2ka^2I_{k+1}.$$
Отсюда находим
$$I_{k+1} = \displaystyle\frac{1}{2ka^2}\begin{bmatrix} \displaystyle\frac{t}{(t^2 + a^2)^k} +(2k-1)I_k \end{bmatrix} (k = 1,2,\ldots).$$
При этом, как мы уже вычислили ранее,
$$I_{1} = \int \displaystyle\frac{dt}{t^2 + a^2} = \displaystyle\frac{1}{a} \text{arctg}\:\displaystyle\frac{t}{a} + C.$$
Итак, и в этом случае мы получили правило вычисления интеграла от дроби четвертого вида.
Из основной теоремы алгебры следует, что каждый многочлен с действительными коэффициентами может быть представлен в виде произведения конечного числа линейных сомножителей вида $x — a$ и квадратичных сомножителей вида $x^2 + px + q$, где $\displaystyle\frac{p^2}{4} — q < 0$. Именно, справедливо равенство
$$Q(x) = A(x-a_1)^{k_1}\ldots(x-a_r)^{k_r}(x^2+p_1x+q_1)^{m_1}\ldots(x^2+p_sx+q_s)^{m_s}, (1)$$
где $k_i$ и $m_i$ – целые неотрицательные числа.
С использованием этого представления можно показать, что справедлива следующая
Теорема. Пусть $\displaystyle\frac{P(x)}{Q(x)}$ – правильная дробь, знаменатель которой допускает разложение (1). Тогда эта дробь единственным образом может быть представлена в виде суммы простых дробей, т.е.
$$\displaystyle\frac{P(x)}{Q(x)} = \sum_{i=1}^{r}\sum_{j=1}^{k_i}\displaystyle\frac{A_{ij}}{(x-a_i)^j} + \sum_{i=1}^{r}\sum_{j=1}^{m_i}\displaystyle\frac{M_{ij}x + N_{ij}}{(x^2 + P_ix+q_i)^j}.$$
Выше уже показано, что интеграл от каждой простой дроби выражается через элементарные функции. Таким образом, справедлива
Метод Остроградского. Этот метод интегрирования рациональных дробей предназначен для выделения рациональной части из интеграла от рациональной функции. Именно, используя представление (1), интеграл от правильной дроби представляется в виде
$$\int \displaystyle\frac{P(x)}{Q(x)} =\\=\int \displaystyle\frac{P(x)}{A(x-a_1)^{k_1}\ldots(x-a_r)^{k_r}(x^2+p_1x +q_1)^{m_1}\ldots(x^2+p_sx+q_s)^{m_s}}dx =\\=\int \displaystyle\frac{R_{k_1 + \ldots + k_r + 2(m_1 + \ldots + m_s) — r — 2s — 1}(x)dx}{A(x-a_1)^{k_1-1}\ldots(x-a_r)^{k_r-1}(x^2+p_1x +q_1)^{m_1-1}\ldots(x^2+p_sx+q_s)^{m_s-1}} +\\+ \int \displaystyle\frac{S_{r+2r-1}(x)}{A(x-a_1)…(x-a_r)(x^2+p_1x +q_1)^{m_1-1}\ldots(x^2+p_sx+q_s)}dx,$$
где многочлены $R_{k_1+\ldots+k_r+2(m_1 + \ldots + m_s)-r-2s-1}(x)$ и $S_{r+2s-1}(x)$ степени $k_1+\ldots+k_r+2(m_1+\ldots+m_s)-r-2s-1$ и $r+2s-1$ соответственно имеют неопределенные коэффициенты. Эти коэффициенты находятся затем из условия равенства производных левой и правой частей записанного равенства. Таким образом, вычисление интеграла от правильной дроби сводится к вычислению интеграла от другой правильной дроби, у которой в знаменателе все множители в первой степени. Такой интеграл вычисляется, как указано выше, путем разложения подынтегрального выражения
на простые дроби. Тем самым отпадает необходимость в использовании полученной выше рекуррентной формулы для вычисления интегралов от простой дроби четвертого типа.
Примеры решения задач
- Найти неопределенный интеграл $I = \int \displaystyle\frac{2x^2 — 3x + 3}{x^3 — 2x^2 + x}dx$.
Решение
Разложим знаменатель на множители: $x^3 -2x^2 + x = x(x-1)^2$. Тогда подынтегральная функция представима в виде
$$\displaystyle\frac{2x^2-3x+3}{x(x-1)^2} = \displaystyle\frac{A}{x} + \displaystyle\frac{B}{x-1} + \displaystyle\frac{C}{(x-1)^2},$$
где $A$, $B$, $C $ – постоянные коэффициенты. Для их нахождения приведем выражение справа к общему знаменателю и, приравнивая числители полученных дробей, найдем$$2x^2-3x+3=A(x-1)^2 + Bx(x-1)+Cx.$$
Поскольку это тождество имеет место при всех $x$, кроме $x=0,x=1,$ то коэффициенты этих многочленов при одинаковых степенях $x$ равны. Приравнивая их, получаем линейную систему уравнений
$$\left.\begin{matrix}x^2 : & A+B=2\\ x : & -2A-B+C=-3\\ x^0 : & A=3\end{matrix}\right\}$$
Решая эту систему, находим $A = 3$, $B = −1$, $C = 2.$ Подставляя эти значения в разложение подынтегральной функции и вычисляя соответствующие интегралы, получаем
$$I=3\ln\left | x \right | — \ln \left | x-1 \right | — \displaystyle\frac{2}{x-1} + C = \ln \displaystyle\frac{\left | x \right |^3}{\left | x-1 \right |} — \displaystyle\frac{2}{x-1} +C.$$ - Найти неопределенный интеграл $I = \int \displaystyle\frac{x dx}{x^3 + 1}dx$.
Решение
Как и в предыдущем примере, разложим на множители знаменатель:
$$x^3 + 1 = (x+1)(x^2-x+1).$$
Раскладываем подынтегральное выражение с неопределнными коэффициентами
$$\displaystyle\frac{x}{x^3 + 1} = \displaystyle\frac{A}{x+1} + \displaystyle\frac{Mx+N}{x^2-x+1},$$
откуда $x = A(x^2−x+1)+(Mx+N)(x+1)$. Приравнивая коэффициенты при одинаковых степенях $x$, составляем линейную систему для нахождения чисел $A$, $M$, $N$:
$$\left.\begin{matrix}x^2 : & 0+A+M,\\ x : & 1=-A+M+N,\\ x^0 : & 0=A+N.\end{matrix}\right\}$$
Решая эту систему, находим $A = −\displaystyle\frac{1}{3}, M = N =\displaystyle\frac{1}{3}$. Поэтому
$$I=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{3}\int \displaystyle\frac{x+1}{x^2-x+1}dx=\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\int \displaystyle\frac{2x-1}{x^2-x+1}dx + \displaystyle\frac{1}{2}\int \displaystyle\frac{dx}{x^2-x+1}=\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\ln(x^2-x+1) + \displaystyle\frac{1}{2} \int \displaystyle\frac{dx}{(x — \displaystyle\frac{1}{2})^2 + \displaystyle\frac{3}{4}} =\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\ln(x^2-x+1) + \displaystyle\frac{1}{\sqrt{3}}\text{arctg}\:\displaystyle\frac{2}{\sqrt{3}}(x-\displaystyle\frac{1}{2}) + C.$$ - Найти неопределенный интеграл $\int \displaystyle\frac{(x^2 — 19x + 6)}{(x-1)(x^2 + 5x + 6)}dx$
Решение
Разложим знаменатель на множители: $(x-1)(x^2+5x+6) = (x-1)(x-2)(x-3).$ Тогда подынтегральная функция представима в виде:
$$\displaystyle\frac{x^2-19x+6}{(x-1)(x^2+5x+6)} = \displaystyle\frac{A}{x-1} + \displaystyle\frac{B}{x+2} + \displaystyle\frac{C}{x+3}$$
Для нахождения $A, B$ и $C$ приведем выражение справа к общему знаменателю и, приравнивая числители полученных дробей, найдем
$$A(x^2 + 5x + 6) + B(x^2 + 2x — 3) + c(x^2 + x — 2) = x^2 -19x+6$$
Приравнивая коэффициенты при одинаковых степенях $x$, составляем систему линейных уравнений для нахождения чисел $A, B, C$
$$\left.\begin{matrix} x^2 : & 1=A+B+C \\ x : & -19 = 5A+2B+C \\ x^0 : & 6=6A-3B-2C \end{matrix}\right\}$$
Решаем систему, получаем значения $A = -1; B = -16; C=18$. Возвращаемся к изначальному интегралу и находим окончательное решение
$$\int (-\displaystyle\frac{1}{x-1}-\displaystyle\frac{16}{x+2}+\displaystyle\frac{18}{x+3})dx = -\ln\left | x-1 \right | — 16\ln\left | x+2 \right |+18\ln\left | x+3 \right | + C.$$ - Найти неопределенный интеграл $\int \displaystyle\frac{x^2-6x+8}{x^3+8}dx$
Решение
По формуле суммы кубов раскладываем знаменатель на множители, используя формулу сокращенного умножения $a^3 + b^3 = (a+b)(a^2-ab+b^2)$
$$\int \displaystyle\frac{x^2-6x+8}{x^3+8}dx = \int \displaystyle\frac{x^2-6x+8}{(x+2)(x^2-2x+4)}dx.$$
Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей
$$\displaystyle\frac{A}{x+2} +\displaystyle\frac{Bx+C}{x^2-2x+4} = \displaystyle\frac{x^2-6x+8}{(x+2)(x^2-2x+4)}.$$
Приводим дробь к общему знаменателю
$$A(x^2 — 2x + 4) + B(x^2 + 2x) + C(x+2) = x^2-6x+8$$
Составим и решим систему
$$\left.\begin{matrix}x^2 : & A+B=1\\ x : & -2A+2B+C=-6\\ x^0 : & 4A+2C=8\end{matrix}\right\}$$
Подставим значения $A = 2$, $B = -1$, $C = 0$ в функцию и найдем интеграл
$$\int (\displaystyle\frac{2}{x+2} — \displaystyle\frac{x}{x^2-2x+4})dx = 2\int \displaystyle\frac{dx}{x+2} + \int \displaystyle\frac{-\displaystyle\frac{1}{2}d(x^2-2x+4) — dx}{x^2 -2x +4} =\\= 2\ln \left | x+2 \right | — \displaystyle\frac{1}{2}\int\displaystyle\frac{d(x^2-2x+4)}{x^2-2x+4} — \int\displaystyle\frac{dx}{x^2-2x+1 +3} = \\= 2\ln \left | x+2 \right | — \frac{1}{2}\ln(x^2 — 2x + 4) — \int \frac{d(x-1)}{(x-1)^2 + (\sqrt{3})^2} = \\= 2\ln \left | x+2 \right | — \frac{1}{2}\ln(x^2 — 2x + 4) — \frac{1}{\sqrt{3}}\text{arctg}\:(\frac{x-1}{\sqrt{3}}) + C.$$
Интегрирование рациональных функций
Тест на тему: Интегрирование рациональных функций |
Литература:
Смотрите также:
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр. 504-512)
- Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001 (стр. 138-155)
5.1 Дифференцируемость и производная
$\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\sgn}{sgn}$ Определение 1. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Если существует конечный предел $\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной функции $f$ в точке $x_0$ и обозначается $f^\prime(x_0)$, или $\displaystyle \frac{df}{dx}(x_0),$ $Df(x_0).$
Определение 2. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Функцию $f$ будем называть дифференцируемой в точке $x_0,$ если существует такая постоянная $A$ (зависящая от $x_0$ и не зависящая от $x$), что справедливо равенство: $$f(x) − f (x_0) = A (x − x_0) + r(x), $$где $r(x) = \overline{o} (x − x_0) \: \: \: (x \to x_0).$
Короче определение дифференцируемости можно записать в следующем виде: $$f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0) \: \: \: (x \to x_0).$$
Покажем, что эти два определения эквивалентны в том смысле, что дифференцируемость функции равносильна существованию производной.
Теорема. Функция $f$ дифференцируема в точке $x_0 ∈ (a, b)$ тогда и только тогда, когда у $f$ существует производная в точке $x_0.$
Пусть $f$ дифференцируема в точке $x_0.$ Это означает, что $f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0),$ где $A$ не зависит от $x$. Отсюда получаем:
$$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = A+\frac{\overline{o} (x − x_0)}{x-x_0}.$$
Тогда, учитывая определение символа $\overline{o}$, имеем
$$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}=A+\lim_{x\to x_0} \frac{\overline{o} (x − x_0)}{(x − x_0)} =A$$ т. е. существует $f^\prime(x_0) = A.$
Обратно, если существует $$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f^\prime(x_0),$$ то $$ \displaystyle \frac{f(x)-f(x_0)}{x-x_0} + f^\prime(x_0) = r_1(x),$$ где $r_1(x) \to 0 (x \to x_0)$. Отсюда следует, что $$ f(x) — f(x_0) = f^\prime(x_0)(x-x_0)+r_1(x)(x-x_0).$$ Обозначим $r(x)=r_1(x)(x-x_0).$ Тогда $r(x)=\overline{o}(x-x_0),$ т. е. $$ f(x) − f (x_0) = f^\prime(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0), $$ а это и означает, что $f$ дифференцируема в точке $x_0$, причем $A= f^\prime(x_0).$
Итак, условие дифференцируемости равносильно наличию производной. Смысл дифференцируемости состоит в том, что в некоторой окрестности точки $x_0$ функция $f$ представима в виде линейной функции $l(x)= f (x_0)+f (x_0) f^\prime(x-x_0)$ приближенно с точностью до величины бесконечно малой более высокого порядка, чем $(x-x_0) $ при $x\to x_0.$
Связь между дифференцируемостью и непрерывностью устанавливает следующая
Теорема. Если функция $f$ дифференцируема в точке $x_0$, то она непрерывна в этой точке.
Дифференцируемость $f$ означает, что
$$ f(x) − f (x_0) = A(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0). $$
Отсюда следует, что $\displaystyle \lim_{x\to x_0} (f(x)-f(x_0)) = 0$, т. е. $\displaystyle \lim_{x\to x_0} f(x)=f(x_0)$, и тем самым теорема доказана.
Обратное утверждение неверно. Именно из непрерывности функции $f$ не следует ее дифференцируемость. Примером может служить функция $f(x)=|x|,$ непрерывная в точке $x_0 = 0$, для которой выражение $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = \frac{|x|}{x} = \sign x $$ не имеет предела $x\to 0$ и, следовательно, функция $f$ не имеет производной в точке $x_0 = 0$. Значит, $ f$ не является дифференцируемой в нуле.
Итак, непрерывность – это необходимое, но не достаточное условие дифференцируемости. Другими словами, если функция разрывна в точке $x_0$, то она недифференцируема в этой точке. Обратное неверно.
С геометрической точки зрения производная $f^\prime(x_0)$ представляет собой тангенс угла наклона касательной к графику функции $y = f(x)$ в точке $M_0(x_0, f (x_0))$. При этом касательной к графику функции $f$ в точке $M_0$ называется предельное положение секущей $M_0M$ при стремлении точки $M (x, f(x))$ вдоль кривой $y = f(x)$ к точке $M_0$. В самом деле, если функция $f$ дифференцируема в точке $x_0$, то при стремлении $M$ к $M_0$ вдоль кривой $y = f(x)$ секущая $M_0M$ имеет тангенс угла наклона, равный $$ \displaystyle \tg\alpha(x) = \frac{f(x)-f(x_0)}{x-x_0}, $$ и при $ x \rightarrow x_0 $ точка $M$ стремится к $M_0$ вдоль кривой $y = f(x)$. Так как $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} \to f^\prime(x_0) \: \: \: (x\to x_0), $$ то $\tg\alpha(x) \to f^\prime(x_0) $ при $x\to x_0$, т. е. секущая стремится занять некоторое предельное положение, тангенс угла наклона $\alpha_0$ которого равен $f^\prime(x_0)$.Отсюда получаем уравнение касательной к графику дифференцируемой в точке $x_0$ функции $y = f(x):$ $$k(x)=f(x_0)+f^\prime(x_0) (x-x_0).$$
Примеры решения задач
- Найти производную $f(x) = \sin x $ в точке $x_0 = 0.$
Решение
Пример можно легко решить, пользуясь определением производной, а так же первым замечательным пределом:
$ \displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}= \lim_{x\to 0} \frac{\sin x — \sin 0}{x-0}=\lim_{x\to 0} \frac{\sin x }{x}=1.$ - Пусть $f(x) = x^{2}$ Тогда производная $f^\prime(x_0)$ равна?
Решение
$\displaystyle f^\prime(x_0) = \lim_{x\to x_0} \frac{x^2-x^2_0}{x-x_0} = \lim_{x\to x_0} \frac{(x-x_0)(x+x_0)}{x-x_0}=$
$\displaystyle = \lim_{x\to x_0} (x+x_0) = 2x_0$ - Пусть $f(x) = \left|x \right |$ и если $x_0 \neq 0$ существует ли $f^\prime(x_0)$?
Решение
$f^\prime(x_0) = \sgn x_0$, где $\sgn$ обозначает функцию знака. А если $x_0 = 0$ $f^\prime_+(x_0)=1,$ $f^\prime_-(x_0)=-1,$ а следовательно $f^\prime(x_0)$ не существует.
- Найдите уравнение касательной к графику функции $y=e^{2x-3}$ в точке $x_0 = 5,$ а также угол наклона касательной в этой точке.
Решение
Известно, что уравнение касательной в точке имеет вид $l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right),$ причём ${f}’\left(x_{0}\right)=\mathrm{tg}\alpha,$ где $\alpha$ — угол наклона касательной.
Находим значение касательной в точке 5, получаем ${f}^\prime\left(x\right)=2e^{2x-3},$ а в точке $x_{0}=5: \, {f}^\prime\left(5\right)=2e^{7} \Rightarrow$ $l = e^{7}+2e^{7}\left(x-5\right) =$
$ -9e^{7}+2e^{7}x$, $\alpha = \mathrm{arctg}\left(2e^{7}\right).$ - Найдите по определению $\sin x.$ на множестве $\mathbb{R}$
Решение
Воспользуемся определением производной $(\sin x)^\prime:$
$
(\sin x)^\prime = \displaystyle \lim_{\Delta x\to 0} \frac{\sin(x+\Delta x)-\sin x}{\Delta x} = \\
= \displaystyle \frac{2\sin \frac{\Delta x}{2}\cdot \cos(x+\frac{\Delta x}{2})}{\Delta x} = \\
= \displaystyle \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos(x+\frac{\Delta x}{2})
$
Теперь сделаем подстановку $ \displaystyle \frac{\Delta x}{2} = t$ . При $\Delta x \to 0, $ $t \to 0.$ Применим первый замечательный предел:
$ \displaystyle \lim_{\Delta x\to 0} \frac { \sin \frac{\Delta x}2}{\frac{\Delta x}2} = \lim_{t\to 0} \frac{\sin t}{t} = 1.$
Сделаем такую же подстановку $\displaystyle \frac{\Delta x}{2} = t$ и используем свойство непрерывности:
$\displaystyle \lim_{\Delta x\to 0} \left ( \cos x + \frac{\Delta x}{2} \right) = \lim_{t\to 0} \cos (x+t)= \cos x.$
Смотрите также
- Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — с. 123-133.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — с. 186-214.
- Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.271-280.
Дифференцируемость и производная
Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Дифференцируемость и производная».