2.5 Критерий Коши

Если для исследования сходимости последовательности применять определение предела, то мы заранее должны знать, является ли данная последовательность сходящейся и значение ее предела. Используя определение предела, мы можем лишь доказывать выдвинутую гипотезу. Однако в ряде случаев по самому виду последовательности трудно определить, является ли она сходящейся или расходящейся. Например, $x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$ . В связи с этим возникает необходимость найти внутреннее свойство последовательности, равносильное сходимости и не
зависящее от числа $a$ – предела последовательности. Мы докажем, что таким свойством является фундаментальность.

Определение. Последовательность $\{x_n\}$ называется фундаментальной (сходящейся в себе), если для любого $\varepsilon > 0$ найдется такой номер $N$, зависящий, вообще говоря, от $\varepsilon$, что для всех номеров $n \geqslant N$, $m \geqslant N$ справедливо неравенство $|x_n — x_m| < \varepsilon$.

Существенное отличие определения фундаментальности от определения предела состоит в том, что в определении предела мы должны знать значение предела, а в определении фундаментальности это не требуется. Смысл определения предела состоит в том, что все элементы последовательности с достаточно большими номерами мало отличаются от значения предела, т. е. $|x_n — a| < \varepsilon$ при $n \geqslant N = N(\varepsilon)$. В определении фундаментальности требуется чтобы все элементы последовательности с достаточно большими номерами мало отличались друг от друга $\Big(|x_n — x_m| < \varepsilon$, $n, m \geqslant N = N(\varepsilon)\Big).$

Равносильность сходимости последовательности и ее фундаментальности устанавливает следующая теорема.

Теорема (критерий Коши). Для того чтобы последовательность была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.

Необходимость доказывается совсем просто. В самом деле, нужно показать, что из сходимости следует фундаментальность. Пусть последовательность $\{x_n\}$ сходится и $\lim\limits_{n\to \infty}x_n = a$. Зададим $\varepsilon > 0$ и найдем номер $N$, такой, что для любого $n \geqslant N$ справедливо неравенство $|x_n — a| < \frac{\varepsilon}{2}$. Если $n, m \geqslant N$, то получим $$|x_n — x_m| \leqslant |x_n — a| + |x_m — a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$ а это и означает, что $\{x_n\}$ – фундаментальна.

Достаточность. Нужно показать, что из фундаментальности последовательности следует ее сходимость. Сначала мы покажем, что из фундаментальности следует ограниченность. Затем, используя лемму Больцано – Вейерштрасса, из ограниченной последовательности выделим сходящуюся подпоследовательность и, наконец, снова используя фундаментальность, покажем, что и вся последовательность сходится к тому же пределу, что и выделенная подпоследовательность.

Итак, пусть $\{x_n\}$ – фундаментальная последовательность. Докажем ее ограниченность. Зададим $\varepsilon = 1$ и, пользуясь фундаментальностью, найдем номер $N_1$, такой, что для любых $n, m \geqslant N_1$ справедливо неравенство $|x_n — x_m| < 1$. Зафиксируем $m = N_1$. Тогда получим, что для всех $n \geqslant N_1$ имеет место неравенство $|x_n — x_m| < 1$, т. е. ${x_N}_1 — 1 < x_n < {x_N}_1 + 1$. Отсюда следует, что $|x_n| \leqslant |{x_N}_1| + 1$ для всех $n \geqslant N_1$. Во множестве $E = \{|{x_N}_1| + 1, |x_1| , \ldots , |{x_N}_1 − 1|\}$, состоящего из конечного числа элементов, выберем наибольший $A = \max\{|{x_N}_1| + 1, |x_1| ,\ldots, |{x_N}_1 − 1|\}$. Тогда получим, что $|x_n| \leqslant A$ для всех $n = 1, 2,\ldots$, а это и означает, что $\{x_n\}$ – ограниченная последовательность.

Применяя теперь к ограниченной последовательности $\{x_n\}$ лемму Больцано – Вейерштрасса, выделим из нее сходящуюся подпоследовательность ${\{{x_n}_k\}}^\infty_{k = 1}$ и обозначим через a предел этой подпоследовательности. Покажем, что вся последовательность $\{x_n\}$ также сходится к числу a, т. е. что $\lim\limits_{n\to \infty}x_n = a$.

Зададим $\varepsilon > 0$ и, пользуясь фундаментальностью последовательности $\{x_n\}$, найдем такой номер $N$, что для всех номеров $n, m \geqslant N$ справедливо неравенство $|x_n − x_m| < \frac{\varepsilon}{2}$. Далее, пользуясь тем, что $\lim\limits_{k\to \infty}{x_n}_k = a$, для заданного $\varepsilon$ найдем номер $k$, такой, что $n_k \geqslant N$ (это возможно, поскольку $n_k \rightarrow \infty$ при $k \rightarrow \infty$) и $|{x_n}_k — a| < \frac{\varepsilon}{2}$. Положим $m = n_k$. Тогда получим, что для любого $n \geqslant N$ справедливо неравенство $|x_n − {x_n}_k| < \frac{\varepsilon}{2}$. Отсюда следует, что для $n \geqslant N$ $$|x_n — a| \leqslant |x_n — {x_n}_k| + |{x_n}_k — a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Итак, для заданного $\varepsilon > 0$ мы нашли номер $N$, начиная с которого справедливо неравенство $|x_n — a| < \varepsilon$. Поскольку выбранное $\varepsilon > 0$ произвольно, то по определению предела последовательности получаем, что $\lim\limits_{n\to \infty}x_n = a$.

Определение фундаментальности последовательности можно сформулировать в такой эквивалентной форме.

Определение. Последовательность $\{x_n\}$ называется фундаментальной, если для любого $\varepsilon > 0$ найдется такой номер $N$, зависящий, вообще говоря, от $\varepsilon$, что для любого $n \geqslant N$ и для любого $p \in N$ справедливо неравенство $|x_{n + p} — x_n| < \varepsilon$.

Пользуясь этим определением, скажем, что последовательность $\{x_n\}$ не является фундаментальной, если найдется такое $\varepsilon_0 > 0$, что для любого $N$ существуют такой номер $n \geqslant N$ и такое натуральное число $p$, что $|x_{n + p} − x_n| \geqslant \varepsilon_0$.

Пример 1. Рассмотрим последовательность $x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$. Для натуральных $n$ и $p$ имеем $x_{n + p} − x_n = \frac{1}{n + 1} + \ldots + \frac{1}{n + p} \geqslant \frac{1}{n + p} + \ldots + \frac{1}{n + p} = \frac{p}{n + p}$. Если $n$ зафиксировано, то для $p = n$ получаем $|x_{n + p} − x_n| \geqslant \frac{1}{2}$. Выберем $\varepsilon_0 = \frac{1}{2} > 0$. Тогда для любого номера $N$ положим $n = N$, $p = n$ и будем иметь $|x_{n + p} − x_n| \geqslant \varepsilon_0$. Это означает, что данная последовательность не является фундаментальной и, следовательно, в силу критерия Коши, она расходится.

Пример 2. Покажем, что последовательность $x_n = \frac{\sin 1}{1^2} + \frac{\sin 2}{2^2} + \ldots + \frac{\sin n}{n^2}$ фундаментальна, а значит, сходящаяся. Для натуральных $n$ и $p$ имеем $$|x_{n + p} − x_n| \leqslant \frac{1}{(n + 1)^2} + \ldots + \frac{1}{(n + p)^2} \leqslant $$ $$\leqslant \frac{1}{n(n + 1)} + \ldots + \frac{1}{(n + p — 1)(n + p)} =$$ $$= \frac{1}{n} — \frac{1}{n + 1} + \ldots + \frac{1}{n + p — 1} — \frac{1}{n + p} =$$ $$= \frac{1}{n} — \frac{1}{n + p} \leqslant \frac{1}{n} < \varepsilon,$$ если только $n \geqslant N = [\frac{1}{\varepsilon}] + 1$. Этим самым доказано, что данная последовательность фундаментальна.

Пример 3. Доказать, что последовательность $x_n = \frac{a_1}{1^2} + \frac{a_2}{2^2} + \ldots + \frac{a_n}{n^2},$ где $|a_n| \leqslant 2$ для всех $n$ натуральных, сходится, с помощью критерия Коши.

Решение

Для натуральных $n$ и $p$ $$|x_{n + p} — x_n| = \frac{|a_{n + 1}|}{(n + 1)^2} + \ldots + \frac{|a_{n + p}|}{(n + p)^2} \leqslant $$ $$\leqslant \frac{2}{(n + 1)^2} + \ldots + \frac{2}{(n + p)^2} \leqslant $$ $$\leqslant \frac{2}{(n + 1)n} + \ldots + \frac{2}{(n + p)(n + p — 1)} =$$ $$= \frac{2}{n} — \frac{2}{n + 1} + \ldots + \frac{2}{n + p — 1} — \frac{2}{n + p} =$$ $$= \frac{2}{n} — \frac{2}{n + p} \leqslant \frac{2}{n} < \varepsilon$$ если только $n \geqslant N = [\frac{2}{\varepsilon}] + 1$. таким образом доказано, что последовательность фундаментальна, а следовательно она сходится.

Упражнение. Покажите, что условие $\lim\limits_{n \to \infty}(x_{n+p} — x_n) = 0$, справедливое при любом натуральном $p$, не влечет фундаментальность последовательности $\{x_n\}$

Литература

Критерий Коши

Тест по теме: «Фундаментальные последовательности. Критерий Коши сходимости числовой последовательности.»


Таблица лучших: Критерий Коши

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Критерий Коши

Теорема

Для того чтобы ряд \sum_{n=1}^{\infty}{a_{n}} сходился, необходимо и достаточно, чтобы для любого \varepsilon >0 существовал такой номер N_{\varepsilon }, что для любого n>N_{\varepsilon } и при любом натуральном p > 0 выполнялось неравенство:$$\left| a_{n+1}+a_{n+2}+…+a_{n+p} \right|<\varepsilon$$.

Доказательство

По определению, сходимость ряда эквивалентна сходимости последовательности его частичных сумм S_{n}. В силу критерия Коши для последовательностей, сходимость последовательности {S_{n}} эквивалентна ее фундаментальности. Фундаментальность последовательности {S_{n}} означает, \forall \varepsilon >0, \exists N_{\varepsilon }: \forall n\geq N_{\varepsilon }, \forall p\in \mathbb{N}\rightarrow \left| S_{n+p}- S_{n} \right|<\varepsilon. При этом:S_{n+p}-S_{n}=a_{1}+\ldots+a_{n}+a_{n+1}+\ldots+a_{n+p}-(a_{1}+\ldots+a_{n})=a_{n+1}+\ldots+a_{n+p}, тем самым теорема доказана.
Спойлер

Покажем, что ряд $$\sum_{n=1}^{\infty}\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$$ расходится. Для любого n и p=n:$$\sum_{k=n+1}^{n+p}a_{k}=\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2n}>\frac{1}{2n}+\frac{1}{2n}+\cdots+\frac{1}{2n}>\frac{n}{2n}=\frac{1}{2},$$ т.е. для любого n при \varepsilon =\frac{1}{2} и p=n критерий Коши не выполняется. Тем самым этот ряд расходится.

[свернуть]

Список Литературы

Тест на проверку знаний по данной теме.

Таблица лучших: Критерий Коши сходимости ряда

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Определение непрерывности по Коши и по Гейне

 Определение: 

Функция \(f(x)\), называется непрерывной в точке \(x_{0}\), если  \(\lim\limits_{x\rightarrow x_{0}} f(x)=f(x_{0})\)

Определение(по Коши):

Функция \(f(x)\), называется непрерывной в точке \(x_{0}\), если: \(\forall \varepsilon > 0,\exists \delta _{\varepsilon }> 0, \forall x\in X,| x-x_{0}|<\delta :|f(x)-f(x_{0})|< \varepsilon\)

Определение (по Гейне):

Функция \(f(x)\), называется непрерывной в точке \(x_{0}\), если для любой последовательности \(\forall \left \{ x_{n} \right \}_{n=1 }^{\infty }\), \(x_{n}\in X, n\in N\), такого что, \(\lim\limits_{n\rightarrow {\infty}}x_{n}=x_{0}\):

\(\lim\limits_{n\rightarrow {\infty}}f(x_{n})=f(x_{0})\)

Определение:

Функция \(f(x)\) называется непрерывной в точке \(x_{0}\), если \(\lim\limits_{\Delta x\rightarrow 0}\Delta f=0\)  , то есть бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Определение:

Функция \(f(x)\) — непрерывна справа, если \(\lim\limits_{x\rightarrow x_{0}+0}f(x)=f(x_{0})\) Функция \(f(x)\) — непрерывна слева, если \(\lim\limits_{x\rightarrow x_{0}-0}f(x)=f(x_{0})\) Функция \(f(x)\) называется непрерывной в точке \(x_{0}\), если \(\lim\limits_{x\rightarrow x_{0}+0}f(x)=\lim\limits_{x\rightarrow x_{0}-0}f(x)=f(x_{0})\)

Замечание:

Все эти определения непрерывности функции в точке эквивалентны. Кроме того, основные элементарные функции непрерывны во всех точках своей области определения.

Пример:

1) \(x_{0}\geq 0\) \(\lim\limits_{x\rightarrow x_{0}}\sqrt{x}=\sqrt{x_{0}}\)        (\(\sqrt{x}\)- непрерывна на всей области определения)

Докажем:

\(\forall \varepsilon > 0, \exists \delta _{\varepsilon }> 0, \forall x:|x-x_{0}|< \delta \Rightarrow |\sqrt{x}-\sqrt{x_{0}}|< \varepsilon\) \(|\sqrt{x}-\sqrt{x_{0}}|= \) \(|\frac{(\sqrt{x}-\sqrt{x_{0}})(\sqrt{x}+\sqrt{x_{0}})}{\sqrt{x}+\sqrt{x_{0}}}| = \) \(|\frac{x-x_{0}}{\sqrt{x}+\sqrt{x_{0}}}|=\) \(\frac{|x-x_{0}|}{\sqrt{x}+\sqrt{x_{0}}}\leq \frac{|x-x_{0}|}{\sqrt{x_{0}}}<\) \(\frac{\delta }{\sqrt{x_{0}}}<\) \( \varepsilon\) \(0< \delta < \varepsilon \sqrt{x_{0}}\) (\(\delta =\frac{\varepsilon \sqrt{x_{0}}}{2})\)

Рекомендации:

  Учебники :

 Сборники задач:

  • Демидович Б.П. «Сборник упражнений по математическому анализу» 13-е издание, исправленное, Отдел 1, § 7 «Непрерывность функции» стр.77-87;
  • Дороговцев А.Я. «Математический анализ» Глава 3, § 2 «Непрерывные функции» стр.50-58.

Непрерывные функции

Тест проверяет знания по тексту «Непрерывные функции»

 

Таблица лучших: Непрерывные функции

максимум из 24 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
(Основной материал был взят из курса Математического анализа ,1 курс,1 семестр (доц. Лысенко З.М.))

Критерий Коши существование предела

7983_201

Огюстен Луи Коши(1789-1857)

Прежде чем  ознакомиться с критерием, вспомним, что значит выражение: «Функция удовлетворяет в точке условию Коши».

Определение:

Будем говорить, что функция f удовлетворяет в точке a, условию Коши, если она определена в некоторой проколотой окрестности  этой точки и \forall \varepsilon > 0,\exists \delta =\delta _{\varepsilon }> 0:\forall {x}',{x}''\in U_{\delta }^{\circ}(a)\Rightarrow |f({x}')-f({x}'')|< \varepsilon (где U^{\circ}_{\delta }(a) -проколотая    \delta-окрестсность точки a). 0< |x'-a|< \delta 0< |x''-a|< \delta

Теорема(Критерий Коши):

  Для того чтобы функция f(x) имела конечное передельное значение в точке x=a, необходимо и достаточно, чтобы функция удовлетворяла условию Коши в точке a.

Доказательство

Необходимость

Докажем, что f(x) удовлетворяет в точке x=a условию Коши. Пусть \exists \lim_{x\rightarrow a}f(x)=A:\forall \varepsilon > 0,\exists \delta _{\varepsilon }> 0:\forall x:0< |x-a|< \delta \Rightarrow |f(x)-A|< \frac{\varepsilon }{2} \forall {x}',{x}''\in U_{\delta }^{\circ}(a): |f({x}')-f({x}'')|=|(f({x}')-A)+(A-f({x}''))|\leq |f({x}')-A|+|f({x}'')-A|< \frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon

Достаточность:

Предположим, что выполняется условие Коши в точке a . Воспользуемся определением предела функции по Гейне: \lim_{n\rightarrow a}x_{n}=a\Rightarrow \lim_{n\rightarrow \infty } f(x_{n})=A. Пусть \left \{ x_{n}\right \}^{\infty } -произведение последовательности \in U_{\delta }^{\circ}(a) и \lim_{n\rightarrow \infty } x_{n}=a . Докажем, чтo \left \{ f(x_{n}) \right \}_{n=1}^{\infty } не зависит от выбранного \left \{ x_{n} \right \}. Согласно условию Коши мы имеем следующее: \forall \varepsilon > 0,\exists \delta _{\varepsilon }> 0:{x}',{x}''\in U_{\delta }^{\circ}(a)\Rightarrow |f({x}')-f({x}'')|< \varepsilon т.к. \lim_{n\rightarrow \infty }x_{n}=a( \forall \varepsilon > 0,\exists N _{\varepsilon }:\forall n\geq N _{\varepsilon } :|x_{n}-a|< \varepsilon ) для \delta _{\varepsilon }:\exists N_{\varepsilon }:\forall n\geq N_{\varepsilon }:0< |x_{n}-a|< \delta _{\varepsilon } \forall m\geq N_{\varepsilon }\Rightarrow 0< |x_{m}-a|< \delta _{\varepsilon } x_{n},x_{m}\in U_{\delta }^{\circ}(a)\Rightarrow |f(x_{n})-f(x_{m})|< \varepsilon -следует из условия Коши. \forall \varepsilon > 0,\exists N_{\varepsilon }:\forall n,m\geq N_{\varepsilon }\Rightarrow |f(x_{n})-f(x_{m})|< \varepsilon\left \{ f(x_{n}) \right \} фундаментальная\Rightarrow по Критерию Коши \left \{ f(x_{n}) \right \}сходящаяся. Покажем, что все последующие \left \{ f(x_{n}) \right \} будут сходится к одному и тому же числу А. \left \{ f(x_{n}) \right \}\rightarrow A x_{n}\rightarrow a\sim f(x_{n})\rightarrow A {x}'_{n}\rightarrow {a}'\sim f({x}'_{n})\rightarrow {A}' x_{1},{x}'_{1},x_{2},{x}'_{2},...\rightarrow a\sim f(x_{1}),f({x}'_{1}),f(x_{2}),f({x}'_{2}),...\rightarrow A Теорема доказана.

Рекомендации:

Учебники :

  • Кудрявцев Л.Д. «Математический анализ» Том 1,Глава 1,§ 4, Тема 4.9 «Критерий Коши существование предела функций» стр.81-84;
  • Фильтенгольц Г.М. «Курс дифференциального и интегрального исчисления»  Том 1, Глава 2, § 2 «Предел функции» стр.115-136;
  • Ильин В.А.,Позняк Э.Г. «Основы математического анализа» Часть 1,Глава 4, § 2 «Понятие предельного значения функции» стр.103-110.

Сборники задач:

  • Демидович Б.П. «Сборник упражнений по математическому анализу» 13-е издание,исправленное, Отдел 1, § 5 «Предел функции» стр.47-72;
  • Дороговцев А.Я. «Математический анализ» Глава 2, § 3 «Подполедовательности и частичные пределы.Верхний и нижний пределы последовательности.Фундоментальные последовательности и критерий Коши» стр.38-41.

"Критерий Коши существование предела"

В этом тесте предоставлены вопросы по пройденной теме. Если внимательно изучили материал, следовали всем данным ссылкам и рекомендациям,то вам не составит труда выполнить этот тест.

Таблица лучших: "Критерий Коши существование предела"

максимум из 24 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
(Основной материал был взят из курса Математического анализа ,1 курс,1 семестр (доц. Лысенко З.М.))

Вторая теорема Коши о промежуточном значении непрерывных функций

Теорема.
Если функция $f$ непрерывна на отрезке $ [a,b] $, $A=f(a) \neq f(b)=B$ и число $C$ заключено между числами $A$ и $B$, то существует такая точка $c \in [a,b]$, что $f(c)=C$.
Доказательство.
Не нарушая общности будем считать, что $ A = f(a) < f(b) = B $. Рассмотри функцию $h(x)=f(x)-C$, непрерывность на отрезке $ [a,b] $ которой следует из непрерывности функции $f$. Очевидно что $h(a)=A-C<0$ и $h(b)=B-C>0$. Применяем к $h$ первую теорему Коши и находим точку $c$ в которой $h(c)=f(c)-C=0$, то-есть $ f(c)=C $. Теорема доказана.
Геометрический смысл теоремы.
Как мы видим на рисунке изображен график функции $f(x)$(в общем произвольной), непрерывной на отрезке $[a,b]$, где $f(b) < f(a)$, $C$ произвольная точка на отрезке $[f(b),f(a)]$ и прямая $l$ задана формулой $l(x)=C$. Как мы видим, прямая $l$ обязана пересечь кривую $f(x)$ в какой-то точке $M$, лежащей на кривой $f(x)$, между точками $A(a,f(a))$ и $B(b,f(b))$. То-есть существует такое $c\in [a,b]$, что $f(c)=C$.

Замечание 1.
Первую и вторую теоремы Коши объединяют в одну, теорему Коши о промежуточном значении функции. В таком случае, теорема о нулях функции считается частным случаем. В то же время, как видно из доказательства вторая теорема Больцано-Коши является прямым следствием первой. Также теорему Коши о промежуточном значении функции называют теоремой Больцано-Коши о промежуточном значении функции.
Замечание 2.
Теорема Коши о промежуточном значении, применяется в доказательствах. Примеров на эту тему как таковых нету, но мы очень часто пользуемся этой теоремой, даже не замечая этого.
Пример.
Пусть функция $f(x)=x^{2}$ определенна и непрерывна на отрезке $[-2,2]$ .
Посчитаем значение функции в точках : $x=-0,75$, $x=0,25$, $x=1,5$.
Мы знаем что данная функция непрерывна на данном отрезке (в силу того что это полиномиальная функция), а значит, в силу второй теоремы Коши, она принимает все свои промежуточные значения и ее значения в указанных точках равны:
$f(-0,75)=0,5625$, $f(0,25)=0,0625$, $f(1,5)=2,25$.
Литература.

Вторая теорема Коши

Тест на тему: «Вторая теорема Коши»


Таблица лучших: Вторая теорема Коши

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных