17.1 Структура множества точек сходимости степенного ряда

Структуру множества точек сходимости степенного ряда устанавливает

Первая теорема Абеля. Пусть степенной ряд $$\sum_{n=0}^{\infty} a_nx^n \tag {17.1} $$ сходится в некоторой точке $x_1 \ne 0.$ Тогда ряд $(17.1)$ абсолютно сходится в каждой точке $x,$ такой, что $|x| \lt |x_1|.$

Из сходимости числового ряда $\displaystyle\sum_{n=0}^{\infty} a_nx_1^n$ следует, что его слагаемые стремятся к нулю и, следовательно, ограничены, т. е. существует такое $M,$ что для всех $n = 0,1,…$ справедливо неравенство $|a_nx_1^n| \le M.$ Поэтому для $|x| \lt |x_1|$ имеем $$|a_nx^n| = |a_nx_1^n| \cdot \left| \frac {x}{x_1}\right|^{n} \le M \cdot \left| \frac {x}{x_1}\right|^{n}.$$ Поскольку $q = \left| \frac {x}{x_1}\right| \lt 1,$ то ряд $\displaystyle\sum_{n=0}^{\infty}q^n $ сходится. Значит, по признаку сравнения сходится и ряд $\displaystyle\sum_{n=0}^{\infty} |a_nx^n|,$ а это означает, что ряд $(17.1)$ сходится и притом абсолютно.

Замечание. Если степенной ряд $(17.1)$ сходится при $x = x_1,$ то нельзя гарантировать, что он сходится и при $x = -x_1.$ Например, ряд $\displaystyle\sum_{n=1}^{\infty} \frac {x^n}{n} $ сходится при $x = x_1 = -1$ и расходится при $x = -x_1 = 1.$

Следствие. Если степенной ряд $(17.1)$ расходится в некоторой точке $x_1,$ то для всех $x,$ таких, что $|x| \gt |x_1|$ ряд $(17.1)$ расходится.

Если бы в некоторой точке $x_2,$ такой, что $|x_2| \gt |x_1|,$ ряд $(17.1)$ оказался сходящимся, то, в силу первой теоремы Абеля, он должен был быть сходящимся в точке $x_1.$ Но в точке $x_1$ ряд $(17.1)$ расходится по условию, и следствие доказано.

Теорема. Множество точек сходимости степенного ряда $(17.1)$ представляет собой непустой промежуток с центром в точке $x_0 = 0.$ Это может быть одноточечное множество $\{ 0 \},$ интервал (быть может, и бесконечный), отрезок или полуинтервал.

Ясно, что в точке $x_0 = 0$ ряд $(17.1)$ с любыми коэффициентами $\{ a_n \}$ сходится. Если других точек сходимости у ряда $(17.1)$ нет, то множеством точек сходимости ряда $(17.1)$ является множество $\{ 0 \}.$ Предположим, что существуют отличные от нуля точки сходимости ряда $(17.1).$ Обозначим через $E$ множество всех таких точек, $R = \sup_{x \in E}|x|.$ Пусть $|x| \lt R.$ Тогда найдется такое $x_1 \in E,$ что $|x_1| \gt |x|.$ По первой теореме Абеля, ряд $(17.1)$ сходится абсолютно в точке $x.$ Если $R \lt +\infty$ и $|x| \gt R,$ то ясно, что $x \notin E$ и, следовательно, в этой точке ряд $(17.1)$ расходится. При $x = \pm R$ ряд $(17.1)$ может быть сходящимся или расходящимся.

Определение. Радиусом сходимости степенного ряда $$\sum_{n=0}^{\infty} a_n(x-x_0)^n \tag {17.2}$$ называется неотрицательное число $R$ (конечное или равное $+\infty$), обладающее тем свойством, что при $|x − x_0| \lt R$ ряд $(17.2)$ сходится, а при $|x − x_0| \gt R$ ряд $(17.2)$ расходится. Существование такого числа $R$ установлено в предыдущей теореме. Интервал $(x_0 − R, x_0 + R)$ называется интервалом сходимости степенного ряда $(17.2).$

Иллюстрация Изображение не найдено

Иллюстрация комплексного случая.

Изображение не найдено

Иллюстрация вещественного случая.

Из доказанной теоремы следует, что степенной ряд $(17.2)$ сходится в точке $x = x_0.$ Если множество точек сходимости ряда $(17.2)$ состоит более чем из одной точки $x_0,$ то ряд $(17.2)$ сходится в интервале $(x_0 − R, x_0 + R)$ и расходится вне отрезка $[x_0 − R, x_0 + R],$ причем во всех точках интервала $(x_0 − R, x_0 + R)$ ряд $(17.2)$ сходится абсолютно.

Пример 1. Ряд $$\sum_{n=0}^{\infty} n!x^n \tag {17.3}$$ сходится лишь в одной точке $x = 0.$ Действительно, если $x \ne 0,$ то, в силу известного равенства $\displaystyle\lim_{n \to \infty} n!x^n = \infty,$ ряд $(17.3)$ расходится, т. к. для него не выполнено необходимое условие сходимости. Итак, здесь $R = 0$ и множество точек сходимости состоит из единственной точки $\{ 0 \}.$

Пример 2. Ряд $$\sum_{n=0}^{\infty} x^n \tag {17.4}$$ сходится при $|x| \lt 1$ и расходится при $|x| \ge 1.$ Здесь $R = 1,$ интервал сходимости $(−1, 1),$ на концах интервала сходимости ряд $(17.4)$ расходится, так что множество точек сходимости ряда $(17.4)$ – интервал $(−1, 1).$

Пример 3. Ряд $$\sum_{n=1}^{\infty} \frac {x^n}{n} \tag {17.5}$$ сходится при $|x| \lt 1$ по признаку сравнения, т. к. $\left| \frac {x^n}{n} \right| \le |x^n|$ (сравниваем с геометрической прогрессией). Если $|x| \gt 1,$ то слагаемые ряда $(17.5)$ стремятся к $\infty$ и, следовательно, ряд $(17.5)$ расходится. Итак, радиус сходимости ряда $(17.5)$ $R = 1,$ интервал сходимости $(−1, 1).$ При $x = −1$ ряд $(17.5)$ принимает вид $\displaystyle\sum_{n=1}^{\infty} \frac {(-1)^n}{n}.$ Это – ряд лейбницевского типа и, следовательно, сходящийся. При $x = 1$ получаем ряд $\displaystyle\sum_{n=1}^{\infty} \frac {1}{n}$ – гармонический, а значит, расходящийся. Итак, на левом конце интервала сходимости ряд $(17.5)$ сходится (условно), а на правом конце – расходится. Множество точек сходимости ряда $(17.5)$ – полуинтервал $[−1, 1).$

Пример 4. Для ряда $$\sum_{n=1}^{\infty} \frac {x^n}{n^2} \tag {17.6}$$ при $|x| \le 1$ имеем $\left| \frac {x^n}{n^2} \right| \le \frac {1}{n^2},$ т. е. ряд $(17.6),$ в силу признака сравнения, сходится на множестве $[−1, 1].$ Если же $|x| \gt 1,$ то ряд $(17.6)$ расходится, т. к. не выполнено необходимое условие сходимости $(\frac {x^n}{n^2} \to \infty \space (n \to \infty)).$ Итак, радиус сходимости ряда $(17.6)$ $R = 1,$ интервал сходимости $(−1, 1),$ множество точек сходимости $[−1, 1].$

Пример 5. Ряд $$\sum_{n=1}^{\infty} \frac {x^n}{n!} \tag {17.7}$$ сходится при каждом $x \in \mathbb R.$ В самом деле, поскольку $$\frac {|x|^{n+1}}{(n+1)!} \cdot \frac {n!}{|x|^n} = \frac {|x|}{n+1} \to 0 \qquad (n \to \infty),$$ то, в силу признака Даламбера, получаем, что ряд $(17.7)$ сходится. Имеем $R = +\infty,$ интервал сходимости $(−\infty, +\infty).$

Примеры решения задач

  1. Определить радиус сходимости ряда $$\sum_{n=0}^{\infty}a_nz^n, \qquad \text{где} \qquad \begin{equation*} a_n =\begin{cases} \frac {1}{n}, \text { если $n = 1, 3, 5, …,$} \\ 0, \text { если $n = 0, 2, 4, …,$} \end{cases} \end{equation*}$$
    Решение

    Признак Даламбера неприменим для определения сходимости этого ряда, так как отношение $\displaystyle\frac {a_{n+1}}{a_n}$ не имеет смысла для четных номеров $n.$ Не дает ответа здесь и признак Коши, поскольку нетрудно проверить, что здесь предел$\displaystyle{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$ не существует. Однако, если положить $b_k = \frac{1}{2k+1},\space k = 0, 1, 2, …,$ и записать данный ряд в виде $$\sum_{k=0}^{\infty}b_kz^{2k+1} = \sum_{k=0}^{\infty} \frac {z^{2k+1}}{2k+1},$$ то, исследовав абсолютную сходимость этого ряда с помощью признака Даламбера, получим $$\lim_{k \to \infty} \frac {|b_{k+1}z^{2k+3}|}{|b_kz^{2k+1}|} = |z|^2 \lim_{k\to \infty} \frac {2k+1}{2k+3} = |z|^2.$$ Отсюда следует, что рассматриваемый ряд абсолютно сходится, когда $|z^2| \lt 1,$ т. е. когда $|z| \lt 1$ и абсолютно расходится, когда $|z| \gt 1.$ Таким образом, радиус сходимости этого степенного ряда равен $1.$

  2. Определить интервал сходимости ряда $$\sum_{n=1}^{\infty} \left( \frac {z}{n} \right) ^n$$
    Решение

    В силу признака Даламбера и признака сравнения получаем, что ряд сходится для любого $x \in \mathbb R$ $$\frac {|z|^{n+1}}{(n+1)^{n+1}} \cdot \frac {n^n}{|z|^n} = \frac {|z| \cdot n^n}{(n+1)^{n+1}} \le \frac {|z| \cdot n^n}{n^{n+1}} = \frac {|z|}{n} \to 0 \qquad (n \to \infty),$$ Таким образом, $R = +\infty,$ а искомый интервал сходимости $(-\infty;+\infty).$

  3. Определить радиус сходимости ряда $$\sum_{n=0}^{\infty} 2^nz^n $$
    Решение

    Сделаем замену $t = 2z^2.$ Отсюда получим, ряд $$\sum_{n=0}^{\infty} t^n \text { — сумма геометрической прогрессии.}$$ При $|t| \lt 1$ ряд сходится, при $|t| \ge 1$ расходится. Теперь подставим $2z^2$ вместо $t$ в неравенство $|t| \lt 1.$ Получим $$|2z^2| \lt 1,$$ откуда $$|z| \lt \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2} = R.$$

  4. Определить множество точек сходимости ряда $$\sum_{n=0}^{\infty} n^2z^n $$
    Решение

    В силу признака Коши получаем, что $$ \sqrt[n]{|n^2z|} = |z|\sqrt[n]{n^2}.$$ Выражение будет стремиться к нулю, при $n \to \infty,$ когда $|z| \lt 1.$ Отсюда радиус сходимости равен $1,$ а интервал сходимости $(-1; 1).$ При $z = 1$ имеем ряд вида $\displaystyle\sum_{n=0}^{\infty} n^2,$ который расходится, т. к. не выполняется необходимое условие сходимости. При $z = -1$ имеем ряд вида $\displaystyle\sum_{n=0}^{\infty} n^2(-1)^n.$ Исследуем по признаку Лейбница. $a_n = n^2$ монотонно возрастает при достаточно больших $n,$ а $\displaystyle{\lim_{n \to \infty}}a_n = \displaystyle{\lim_{n \to \infty}}n^2 = \infty.$ Следовательно, так как ни одно из условий признака Лейбница не выполняется, то ряд в точке $z = -1$ расходится. Следовательно, множество точек сходимости $(-1; 1).$

  5. Определить множество точек сходимости ряда $$\sum_{n=1}^{\infty} \frac{z^n}{n^3} $$
    Решение

    При $|z| \le 1$ имеем $\left| \frac{z^n}{n^3} \right| \le \left| \frac{1}{n^3} \right|,$ т. е. ряд сходится на $[-1;1].$ Если $|z| \gt 1,$ то ряд расходится т. к. не выполнено необходимое условие сходимости $\left( \displaystyle{ \lim_{n \to \infty}}\frac{z^n}{n^3} \to \infty \right ).$ Итак, радиус сходимости равен $1,$ а множество точек сходимости — интервал $[-1;1].$

Литература

  1. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 2. Радиус сходимости и круг сходимости степенного ряда / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 720 с. — c. 100-107.
  2. В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2010, ч.2, разделы 17 «Степенные ряды» и 17.1 «Структура множества точек сходимости степенного ряда».(стр. 53 — 56).
  3. Лысенко З.М. Конспект лекций по математическому анализу.

Структура множества точек сходимости степенного ряда

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.