17 Степенные ряды

Степенным рядом называется ряд вида $\displaystyle\sum_{n=0}^{\infty} a_n(x-x_0)^n,$ где $x_0$ — фиксированная точка, $\{ a_n \}$ — числовая последовательность. Числа $a_n(n = 0,1,…)$ называются коэффициентами ряда, точка $x_0$ — центром ряда. Будем рассматривать ряды вида $\displaystyle\sum_{n=0}^{\infty} a_nx^n,$ т. е. полагаем $x_0 = 0.$

Пример
Ряд $\displaystyle\sum_{n=0}^{\infty}x^n $ — сумма геометрической прогрессии. Этот ряд сходится при $|x| \lt 1$ и расходится при $|x| \ge 1.$

17.1 Структура множества точек сходимости степенного ряда

Структуру множества точек сходимости степенного ряда устанавливает

Первая теорема Абеля. Пусть степенной ряд $$\sum_{n=0}^{\infty} a_nx^n \tag {17.1} $$ сходится в некоторой точке $x_1 \ne 0.$ Тогда ряд $(17.1)$ абсолютно сходится в каждой точке $x,$ такой, что $|x| \lt |x_1|.$

Из сходимости числового ряда $\displaystyle\sum_{n=0}^{\infty} a_nx_1^n$ следует, что его слагаемые стремятся к нулю и, следовательно, ограничены, т. е. существует такое $M,$ что для всех $n = 0,1,…$ справедливо неравенство $|a_nx_1^n| \le M.$ Поэтому для $|x| \lt |x_1|$ имеем $$|a_nx^n| = |a_nx_1^n| \cdot \left| \frac {x}{x_1}\right|^{n} \le M \cdot \left| \frac {x}{x_1}\right|^{n}.$$ Поскольку $q = \left| \frac {x}{x_1}\right| \lt 1,$ то ряд $\displaystyle\sum_{n=0}^{\infty}q^n $ сходится. Значит, по признаку сравнения сходится и ряд $\displaystyle\sum_{n=0}^{\infty} |a_nx^n|,$ а это означает, что ряд $(17.1)$ сходится и притом абсолютно.

Замечание. Если степенной ряд $(17.1)$ сходится при $x = x_1,$ то нельзя гарантировать, что он сходится и при $x = -x_1.$ Например, ряд $\displaystyle\sum_{n=1}^{\infty} \frac {x^n}{n} $ сходится при $x = x_1 = -1$ и расходится при $x = -x_1 = 1.$

Следствие. Если степенной ряд $(17.1)$ расходится в некоторой точке $x_1,$ то для всех $x,$ таких, что $|x| \gt |x_1|$ ряд $(17.1)$ расходится.

Если бы в некоторой точке $x_2,$ такой, что $|x_2| \gt |x_1|,$ ряд $(17.1)$ оказался сходящимся, то, в силу первой теоремы Абеля, он должен был быть сходящимся в точке $x_1.$ Но в точке $x_1$ ряд $(17.1)$ расходится по условию, и следствие доказано.

Теорема. Множество точек сходимости степенного ряда $(17.1)$ представляет собой непустой промежуток с центром в точке $x_0 = 0.$ Это может быть одноточечное множество $\{ 0 \},$ интервал (быть может, и бесконечный), отрезок или полуинтервал.

Ясно, что в точке $x_0 = 0$ ряд $(17.1)$ с любыми коэффициентами $\{ a_n \}$ сходится. Если других точек сходимости у ряда $(17.1)$ нет, то множеством точек сходимости ряда $(17.1)$ является множество $\{ 0 \}.$ Предположим, что существуют отличные от нуля точки сходимости ряда $(17.1).$ Обозначим через $E$ множество всех таких точек, $R = \sup_{x \in E}|x|.$ Пусть $|x| \lt R.$ Тогда найдется такое $x_1 \in E,$ что $|x_1| \gt |x|.$ По первой теореме Абеля, ряд $(17.1)$ сходится абсолютно в точке $x.$ Если $R \lt +\infty$ и $|x| \gt R,$ то ясно, что $x \notin E$ и, следовательно, в этой точке ряд $(17.1)$ расходится. При $x = \pm R$ ряд $(17.1)$ может быть сходящимся или расходящимся.

Определение. Радиусом сходимости степенного ряда $$\sum_{n=0}^{\infty} a_n(x-x_0)^n \tag {17.2}$$ называется неотрицательное число $R$ (конечное или равное $+\infty$), обладающее тем свойством, что при $|x − x_0| \lt R$ ряд $(17.2)$ сходится, а при $|x − x_0| \gt R$ ряд $(17.2)$ расходится. Существование такого числа $R$ установлено в предыдущей теореме. Интервал $(x_0 − R, x_0 + R)$ называется интервалом сходимости степенного ряда $(17.2).$

Иллюстрация Изображение не найдено

Иллюстрация комплексного случая.

Изображение не найдено

Иллюстрация вещественного случая.

Из доказанной теоремы следует, что степенной ряд $(17.2)$ сходится в точке $x = x_0.$ Если множество точек сходимости ряда $(17.2)$ состоит более чем из одной точки $x_0,$ то ряд $(17.2)$ сходится в интервале $(x_0 − R, x_0 + R)$ и расходится вне отрезка $[x_0 − R, x_0 + R],$ причем во всех точках интервала $(x_0 − R, x_0 + R)$ ряд $(17.2)$ сходится абсолютно.

Пример 1. Ряд $$\sum_{n=0}^{\infty} n!x^n \tag {17.3}$$ сходится лишь в одной точке $x = 0.$ Действительно, если $x \ne 0,$ то, в силу известного равенства $\displaystyle\lim_{n \to \infty} n!x^n = \infty,$ ряд $(17.3)$ расходится, т. к. для него не выполнено необходимое условие сходимости. Итак, здесь $R = 0$ и множество точек сходимости состоит из единственной точки $\{ 0 \}.$

Пример 2. Ряд $$\sum_{n=0}^{\infty} x^n \tag {17.4}$$ сходится при $|x| \lt 1$ и расходится при $|x| \ge 1.$ Здесь $R = 1,$ интервал сходимости $(−1, 1),$ на концах интервала сходимости ряд $(17.4)$ расходится, так что множество точек сходимости ряда $(17.4)$ – интервал $(−1, 1).$

Пример 3. Ряд $$\sum_{n=1}^{\infty} \frac {x^n}{n} \tag {17.5}$$ сходится при $|x| \lt 1$ по признаку сравнения, т. к. $\left| \frac {x^n}{n} \right| \le |x^n|$ (сравниваем с геометрической прогрессией). Если $|x| \gt 1,$ то слагаемые ряда $(17.5)$ стремятся к $\infty$ и, следовательно, ряд $(17.5)$ расходится. Итак, радиус сходимости ряда $(17.5)$ $R = 1,$ интервал сходимости $(−1, 1).$ При $x = −1$ ряд $(17.5)$ принимает вид $\displaystyle\sum_{n=1}^{\infty} \frac {(-1)^n}{n}.$ Это – ряд лейбницевского типа и, следовательно, сходящийся. При $x = 1$ получаем ряд $\displaystyle\sum_{n=1}^{\infty} \frac {1}{n}$ – гармонический, а значит, расходящийся. Итак, на левом конце интервала сходимости ряд $(17.5)$ сходится (условно), а на правом конце – расходится. Множество точек сходимости ряда $(17.5)$ – полуинтервал $[−1, 1).$

Пример 4. Для ряда $$\sum_{n=1}^{\infty} \frac {x^n}{n^2} \tag {17.6}$$ при $|x| \le 1$ имеем $\left| \frac {x^n}{n^2} \right| \le \frac {1}{n^2},$ т. е. ряд $(17.6),$ в силу признака сравнения, сходится на множестве $[−1, 1].$ Если же $|x| \gt 1,$ то ряд $(17.6)$ расходится, т. к. не выполнено необходимое условие сходимости $(\frac {x^n}{n^2} \to \infty \space (n \to \infty)).$ Итак, радиус сходимости ряда $(17.6)$ $R = 1,$ интервал сходимости $(−1, 1),$ множество точек сходимости $[−1, 1].$

Пример 5. Ряд $$\sum_{n=1}^{\infty} \frac {x^n}{n!} \tag {17.7}$$ сходится при каждом $x \in \mathbb R.$ В самом деле, поскольку $$\frac {|x|^{n+1}}{(n+1)!} \cdot \frac {n!}{|x|^n} = \frac {|x|}{n+1} \to 0 \qquad (n \to \infty),$$ то, в силу признака Даламбера, получаем, что ряд $(17.7)$ сходится. Имеем $R = +\infty,$ интервал сходимости $(−\infty, +\infty).$

Примеры решения задач

  1. Определить радиус сходимости ряда $$\sum_{n=0}^{\infty}a_nz^n, \qquad \text{где} \qquad \begin{equation*} a_n =\begin{cases} \frac {1}{n}, \text { если $n = 1, 3, 5, …,$} \\ 0, \text { если $n = 0, 2, 4, …,$} \end{cases} \end{equation*}$$
    Решение

    Признак Даламбера неприменим для определения сходимости этого ряда, так как отношение $\displaystyle\frac {a_{n+1}}{a_n}$ не имеет смысла для четных номеров $n.$ Не дает ответа здесь и признак Коши, поскольку нетрудно проверить, что здесь предел$\displaystyle{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$ не существует. Однако, если положить $b_k = \frac{1}{2k+1},\space k = 0, 1, 2, …,$ и записать данный ряд в виде $$\sum_{k=0}^{\infty}b_kz^{2k+1} = \sum_{k=0}^{\infty} \frac {z^{2k+1}}{2k+1},$$ то, исследовав абсолютную сходимость этого ряда с помощью признака Даламбера, получим $$\lim_{k \to \infty} \frac {|b_{k+1}z^{2k+3}|}{|b_kz^{2k+1}|} = |z|^2 \lim_{k\to \infty} \frac {2k+1}{2k+3} = |z|^2.$$ Отсюда следует, что рассматриваемый ряд абсолютно сходится, когда $|z^2| \lt 1,$ т. е. когда $|z| \lt 1$ и абсолютно расходится, когда $|z| \gt 1.$ Таким образом, радиус сходимости этого степенного ряда равен $1.$

  2. Определить интервал сходимости ряда $$\sum_{n=1}^{\infty} \left( \frac {z}{n} \right) ^n$$
    Решение

    В силу признака Даламбера и признака сравнения получаем, что ряд сходится для любого $x \in \mathbb R$ $$\frac {|z|^{n+1}}{(n+1)^{n+1}} \cdot \frac {n^n}{|z|^n} = \frac {|z| \cdot n^n}{(n+1)^{n+1}} \le \frac {|z| \cdot n^n}{n^{n+1}} = \frac {|z|}{n} \to 0 \qquad (n \to \infty),$$ Таким образом, $R = +\infty,$ а искомый интервал сходимости $(-\infty;+\infty).$

  3. Определить радиус сходимости ряда $$\sum_{n=0}^{\infty} 2^nz^n $$
    Решение

    Сделаем замену $t = 2z^2.$ Отсюда получим, ряд $$\sum_{n=0}^{\infty} t^n \text { — сумма геометрической прогрессии.}$$ При $|t| \lt 1$ ряд сходится, при $|t| \ge 1$ расходится. Теперь подставим $2z^2$ вместо $t$ в неравенство $|t| \lt 1.$ Получим $$|2z^2| \lt 1,$$ откуда $$|z| \lt \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2} = R.$$

  4. Определить множество точек сходимости ряда $$\sum_{n=0}^{\infty} n^2z^n $$
    Решение

    В силу признака Коши получаем, что $$ \sqrt[n]{|n^2z|} = |z|\sqrt[n]{n^2}.$$ Выражение будет стремиться к нулю, при $n \to \infty,$ когда $|z| \lt 1.$ Отсюда радиус сходимости равен $1,$ а интервал сходимости $(-1; 1).$ При $z = 1$ имеем ряд вида $\displaystyle\sum_{n=0}^{\infty} n^2,$ который расходится, т. к. не выполняется необходимое условие сходимости. При $z = -1$ имеем ряд вида $\displaystyle\sum_{n=0}^{\infty} n^2(-1)^n.$ Исследуем по признаку Лейбница. $a_n = n^2$ монотонно возрастает при достаточно больших $n,$ а $\displaystyle{\lim_{n \to \infty}}a_n = \displaystyle{\lim_{n \to \infty}}n^2 = \infty.$ Следовательно, так как ни одно из условий признака Лейбница не выполняется, то ряд в точке $z = -1$ расходится. Следовательно, множество точек сходимости $(-1; 1).$

  5. Определить множество точек сходимости ряда $$\sum_{n=1}^{\infty} \frac{z^n}{n^3} $$
    Решение

    При $|z| \le 1$ имеем $\left| \frac{z^n}{n^3} \right| \le \left| \frac{1}{n^3} \right|,$ т. е. ряд сходится на $[-1;1].$ Если $|z| \gt 1,$ то ряд расходится т. к. не выполнено необходимое условие сходимости $\left( \displaystyle{ \lim_{n \to \infty}}\frac{z^n}{n^3} \to \infty \right ).$ Итак, радиус сходимости равен $1,$ а множество точек сходимости — интервал $[-1;1].$

Литература

  1. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 2. Радиус сходимости и круг сходимости степенного ряда / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 720 с. — c. 100-107.
  2. В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2010, ч.2, разделы 17 «Степенные ряды» и 17.1 «Структура множества точек сходимости степенного ряда».(стр. 53 — 56).
  3. Лысенко З.М. Конспект лекций по математическому анализу.

Структура множества точек сходимости степенного ряда

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

М623. Задача об осях симметрии куба, правильной треугольной пирамиды и нечетности осей симметрии многогранника.

Задача из журнала «Квант» (1980 год, 5 выпуск)

Условие

а) Сколько осей симметрии имеет куб? Правильная треугольная пирамида?

б)* Докажите, что если некоторый многогранник имеет $k$ осей симметрии $(k \geq 1)$, то $k$ нечетно.

Решение

а) Нетрудно указать девять осей симметрии куба. Это — прямые, соединяющие центр куба $O$ с центрами граней (их три: $Ox$, $Oy$, $Oz$ на рисунке $1$) и с серединами ребер (их шесть).

Других осей симметрии у куба нет: это можно доказать, опираясь на такое наблюдение: при любом самосовмещении куба каждая из трех осей $Ox$, $Oy$, $Oz$ должна отображаться на одну из этих же осей, причем если это само совмещение — симметрия (поворот на $180 ^\circ$) $S_l$ относительно некоторой прямой $l$, отличной от $Ox$, $Oy$ и $ Oz$, то одна из этих трех осей должна переходить сама в себя, а две остальные — друг в друга.

У правильного тетраэдра три оси симметрии — прямые, соединяющие середины его ребер. Чтобы убедиться в этом, удобно достроить тетраэдр до куба, проведя через каждое ребро тетраэдра плоскость, параллельную противоположному ребру (рис. $2$). Ясно, что любое самосовмещение тетраэдра будет также самосовмещением этого описанного куба. Из девяти осевых симметрий, отображающих куб на себя, лишь три будут переводить в себя тетраэдр.

б) Пусть дан многогранник $M$, у которого более одной оси симметрии.

Лемма $1$ Если $l$ и $m$ — оси симметрии многогранника $M$, то $S_l (m) = m’$ — также ось симметрии $М$.

В самом деле, если точки $P$ и $P’$ многогранника $M$ симметричны относительно $m$, то $S_l (P)$ и  $S_l (P’)$ будут симметричными относительно $m’$. Короче: $S_{m’}  = S_l O S_m O S_l$.

Лемма $2$ Если $l$ и $m$ — оси симметрии многогранника $M$, пересекающиеся в точке $O$ и перпендикулярные друг к другу, то прямая $n$, перпендикулярная им обоим и проходящая через точку $O$, также служит осью симметрии $M$.

Действительно, $S_n = S_m O S_l$. Это легко проверить, приняв данные прямые за оси координат, или построив прямоугольный параллелепипед с центром в точке $O$ и осями симметрии $l$, $m$, $n$ с произвольной вершиной $P$ (рис. $3$).

Леммы $1$ и $2$ позволяют, фиксировав какую-то одну ось симметрии $l$, разбить все остальные на пары: если $m$ удовлетворяет условия леммы $2$, то пару с ней образует $n$, а если нет, то $m’ = S_l(m) \ne m$. Отсюда сразу следует утверждение задачи б).

Возникает естественный вопрос: какое вообще (конечное) множество прямых может быть множеством всех осей симметрии некоторого многогранника?

Различные примеры даются множеством осей симметрии $n$-угольной правильной призмы (здесь количество осей $p=n$ при $n$ нечетном и $p=n+1$ при $n$ четном), тетраэдра (или прямоугольного параллелепипеда с разными ребрами, $p=3$), куба (или октаэдра $p=9$) и додекаэдра (или икосаэдра, $p=15$). Попробуйте доказать, что других множеств осей симметрии (состоящих более чем из одной прямой) не бывает. Конечно, тут не обойтись без такой очень полезной леммы, которую многие читатели применили и в решении задачи б).

Лемма $3$ Оси симметрии любого многогранника пересекаются в одной точке.

Предположим, что $l$, $m$ — непересекающиеся оси симметрии многогранника $M$. Пусть $n$ — общий перпендикуляр $l$, $m$; рассмотрим прямоугольную систему координат с началом в точке $O = l \cap n$, с осью $Oz$ направленной по лучу $OA$, где $A = n \cap m$; пусть $|OA| = a$. Тогда при симметрии относительно оси $l$ координата $z$ любой точки переходит в $(-z)$, а при симметрии относительно $m$ — в $(2a-z)$. Поэтому при композиции этих двух симметрий $z$ изменяется на $2a$. Повторяя эту композицию достаточное число раз, мы «выгоним» любую точку за пределы многогранника $M$.  Противоречие!

Вот еще более короткое доказательство леммы $3$ (правда, использующее понятие, заимствованное из механики): пусть $O$ — центр масс одинаковых грузиков, помещенных в вершинах многогранника $M$; ясно, что при любом самосовмещении многогранника $M$ грузики лишь меняются местами, поэтому точка $O$ переходит в себя; в частности, все оси симметрии многогранника $M$ проходят через точку $O$.

Н. Васильев, В. Сендеров, А. Сосинский