Processing math: 100%

Изоморфизм линейных пространств

Пусть заданы два линейных пространства над полем [latex]\mathbb{P}[/latex]: [latex]A[/latex] и [latex]B[/latex]. Тогда изоморфизмом f (обозначается как [latex]A \cong B[/latex]) называется биекция из [latex]A[/latex] в [latex]B[/latex], удовлетворяющая следующим условиям:
1) [latex]f(a+b) = f(a) + f(b)[/latex]
2) [latex]f(\lambda\cdot a) = \lambda\cdot f(a) [/latex]

Изоморфными пространствами называются такие линейные пространства, между которыми можно установить изоморфизм.

Свойства изоморфизма:
1) [latex]f(0) = 0[/latex]
2)[latex]f(-a) = -f(a)[/latex]
3) [latex]f(\sum_{j=1}^{k}a_j a_j) = \sum_{j=1}^{k}a_j f(a_j)[/latex]
4) При изоморфном отображении линейно независимая система не может стать линейно зависимой. Обратное также верно.
5) Базис [latex]A[/latex] отображается в базис [latex]B[/latex].
6) Прямая сумма подпространств в [latex]A[/latex] отображается в прямую сумму образов этих подпространств в [latex]B[/latex].

 

По сути, изоморфизм является линейным оператором с нулевым дефектом и максимальным рангом.

 

Теорема. Любые два конечномерные линейные пространства, имеющие одинаковую размерность и заданные над одним и тем же полем, изоморфны.

Зададим два линейных пространства [latex]X[/latex] и [latex]Y[/latex] над полем P, [latex]\textrm{dim} X = \textrm{dim} Y[/latex]. Пусть базис [latex]X[/latex] — [latex]e_1,e_2,\dots ,e_n [/latex]; Y — [latex]e’_1,e’_2,\dots , e’_n[/latex]. Возьмём в пространстве [latex]X[/latex] векторы x1=α1e1+α2e2++αnen

и x2=β1e1+βe2++βen
Тогда при изоморфизме [latex]X \cong Y[/latex]
f(x1+x2)=f((α1+β1)e1+(α2+β2)e2++(αn+βn)en)==(α1+β1)e1+(α2+β2)e2++(αn+βn)en==(α1e1+α2e2++αnen)+(β1e1+β2e2++βnen)=f(x1)+f(x2).

(первое условие изоморфизма) и
f(λx)=f((λα1)e1+(λα2)e2++(λαn)en)==(λα1)e1+(λα2)e2++(λαn)en==λ(α1e1+α2e2++αnen)=λf(x)

(второе условие).

Следствие. Все линейные пространства над одним и тем же полем [latex]\mathbb{P}[/latex] одинаковой размерности [latex]n[/latex] изоморфны [latex]n[/latex]-мерному арифметическому линейному пространству [latex]\mathbb{R}^n[/latex] над полем [latex]\mathbb{P}[/latex].

Примеры

1. Привести пример отображения из [latex]\mathbb{R}[/latex] в [latex]\mathbb{\mathbb{N}_0}[/latex], которое является изоморфизмом.
Решение
2. Доказать первое свойство ([latex]f(0) = 0[/latex]).
Решение

 

Смотрите также

Тест

Изоморфизм линейных пространств

Тест на знание изоморфизма линейных пространств.

Виды отображений. Распознавание свойств отображений. Композиция отображений. Обратимость. Примеры

Материал лекций по теме «Отображения, типы отображений, тождественное отображение»

Рассмотрим пример, в котором заданное соответствие не является отображением.

Задача №1
Условие задачи:
Задано f(u)=|u(u+1)(u+2)3|, U=Z, V=N. Определить, будет ли f:UV отображением.

Решение

Рассмотрим задачи, в которых определим вид отображения и исследуем его на обратимость.

Задача №2
Условие задачи:
Заданы U=Z, V=N, f(u)=u2+2, f(u):UV. Определить вид этого отображения и исследовать на обратимость.

Решение

Задача №3
Условие задачи:
Заданы U=[π2;π2], V=[1;1], f:UV, f(u)=sinu. Определить вид отображения и исследовать на обратимость.

Решение

Задача №4
Условие задачи: Заданы f:QQ, g:QQ, f(u)=2u, g(u)=u2. Определить, обладает ли композиция этих отображений свойством коммутативности.

Решение

Литература

  • Белозеров Г.С. Конспект лекций по линейной алгебре
  • Кострикин А.И. Введение в алгебру. Часть 1, ФИЗМАТЛИТ, 2001г., стр. 35-38

Виды отображений. Обратимость

Тест