При рассмотрении вопроса о корнях многочлена, особо выделяют понятие кратных корней.
Определение. Пусть задан многочлен $f\left(x\right) \in P\left[x\right]$ ($P\left[x\right]$ — множество всех многочленов от буквы $x$ над полем $P$) и $\alpha$, где $\alpha$ — корень многочлена $f\left(x\right)$. Элемент $\alpha$ назовем $k$-кратным ($k \in \mathbb {N}$, $k>1$) корнем многочлена, если имеет место следующее представление: $$f\left(x\right)=\left(x-\alpha\right)^k f_{1}\left(x\right),\, f_{1}\left(\alpha\right) \ne 0.$$
Принято рассматривать понятие кратного корня для $k>1$. Если же $f\left(x\right)$ можно представить следующим образом: $$f\left(x\right)=\left(x-\alpha\right) f_{1}\left(x\right),\, f_{1}\left(\alpha\right) \ne 0,$$ то $\alpha$ называется простым (однократным) корнем многочлена$f\left(x\right)$. Если для $f\left(x\right)$ имеет место следующее равенство: $$f\left(x\right)=\left(x-\alpha\right)^2 f_{1}\left(x\right),\, f_{1}\left(\alpha\right) \ne 0,$$ то $\alpha$ называется двукратным корнем многочлена $f\left(x\right)$. Аналогично, существуют корни трехкратные, четырехкратные и так далее.
Часто условие $f_{1}\left(\alpha\right) \ne 0$ заменяют на $f_{1}\left(x\right)\,\bar\vdots\,(x-\alpha)$. Эквивалентность этих условий вытекает из следствий теоремы Безу. Тогда, набор условий, что $f(x)\,\vdots\,\left(x-\alpha\right)^k$, но $f(x)\,\bar\vdots\,\left(x-\alpha\right)^{k+1}$ эквивалентен тому, что $\alpha$ — $k$-кратный корень многочлена $f(x)$.
Процесс нахождения кратности корня
Пусть задан многочлен $f\left(x\right) \in P\left[x\right]$ и его корень $\alpha$ ( $\deg f\left(x\right) > 0$). Рассмотрим задачу о нахождении кратности корня $\alpha$.
Так как $\alpha$ — корень $f\left(x\right)$, то имеет место следующее представление: $$f\left(x\right)=\left(x-\alpha\right)f_{1}\left(x\right).$$ Тогда, если $\alpha$ не является корнем $f_{1}\left(x\right)$ ($f_{1}\left(\alpha\right) \ne 0$), то, по определению, $\alpha$ — простой корень многочлена $f\left(x\right)$. В противном случае, $\alpha$ — $k$-кратный ($k \in \mathbb {N}$, $k > 1 $) корень $f\left(x\right)$. Задача сводится к нахождению $k-1$, то есть к нахождению кратности корня $f_{1}\left(x\right)$, где $\deg f_{1}\left(x\right) = \deg f\left(x\right) — 1$. Учитывая, что $\deg f\left(x\right) > 0$, то повторение такого алгоритма решает задачу. Для этого используется алгоритм Горнера.
Пусть задан многочлен $f\left(x\right)=x^3-3x^2+4$. Определить, является ли $2$ корнем многочлена $f(x)$. В случае положительного ответа найти его кратность.
Решение
Для решении задачи воспользуемся алгоритмом Горнера. Стоит обратить внимание на то, что хоть и слагаемое вида $a_{1}x^1$ отсутствует в записи, но нулевой коэффициент необходимо не забыть занести в таблицу.
$1$
$-3$
$0$
$4$
$2$
$1$
$-1$
$-2$
$0$
$2$
$1$
$1$
$0$
$2$
$1$
$3$
Из таблицы видно, что многочлен $f(x)$ поделился на $\left(x-2\right)^2$ без остатка, а на $\left(x-2\right)^3$ — нет. Получаем, что $2$ — двукратный корень многочлена $f(x)$.
[свернуть]
Заданы $2$ многочлена $f(x)$, $g(x)$. Известно, что $\alpha$ — двукратный корень многочлена $f(x)$ и простой корень многочлена $g(x)$. Найти кратность корня $\alpha$ многочлена $f(x)g(x)$.
Решение
Так как $\alpha$ — двукратный корень многочлена $f(x)$, то $f(x)$ представим в следующем виде: $$f\left(x\right)=\left(x-\alpha\right)^2 f_{1}\left(x\right),$$где $f_{1}(\alpha) \ne 0$. Аналогично, $g(x)$ можно представить следующим образом: $$g\left(x\right)=\left(x-\alpha\right) g_{1}\left(x\right),$$где $g_{1}(\alpha) \ne 0$. Тогда, $$f(x)g(x)=\left(x-\alpha\right)^2f_{1}(x)(x-\alpha)g_{1}(x)=\left(x-\alpha\right)^3f_{1}(x)g_{1}(x).$$Так как $f_{1}(\alpha) \ne 0$ и $g_{1}(\alpha) \ne 0$, то $f_{1}(\alpha)g_{1}(\alpha)\ne0$. Обозначим $f(x)g(x)=h(x)$, $f_{1}(x)g_{1}(x)=h_{1}(x)$, тогда перепишем выражение многочлена $f(x)g(x)$ следующим образом: $$h(x)=\left(x-\alpha\right)^3h_{1}(x),$$ где $h_{1}(\alpha)\ne0$. Тогда по определению $\alpha$ — корень $f(x)g(x)$ третьей кратности.
[свернуть]
Задан многочлен $f(x)=x^5+5x^4+10x^3+10x^2+5x+1$. Определить кратность корня $-1$.
Из таблицы видно, что многочлен пятой степени $f(x)$ поделился на $\left(x+1\right)^5$ без остатка. Получаем, что $-1$ — корень пятой кратности.
[свернуть]
Задан многочлен $f(x)=\left(x-2\right)^2(x^2+x-6)$. Определить, является ли $2$ корнем $f(x)$ второй кратности. В случае отрицательного ответа найти его кратность.
Решение
По определению, для того, что бы $2$ была корнем второй кратности, необходимо что бы имело место следующее представление: $$f(x)=\left(x-2\right)^2f_{1}(x),\, f_{1}(2) \ne 0.$$С другой стороны, в нашем случае: $$f_{1}(x)=x^2+x-6=(x-2)(x+3),\, f_{1}(2)=0.$$ Получаем, что $2$ не корень второй кратности. Тогда найдем его кратность. Выразим $f(x)$ подставив $f_{1}(x)=(x-2)(x+3)$:$$f(x)=\left(x-2\right)^3(x+3)=\left(x-2\right)^3f_{2}(x),$$ $f_{2}(2)=(2+3)=5\ne0$. Значит, по определению, $2$ — корень многочлена $f(x)$ третьей кратности.
[свернуть]
Задан многочлен $f(x)=x^8-8x^7+10x^6-x^4$. Найти кратность корня $0$ многочлена $f(x)$.
Решение
Представим исходный многочлен следующим образом: $$f(x)=x^4(x^4-8x^3+10x^2-1).$$
Обозначим $f_{1}(x)=x^4-8x^3+10x^2-1$. Легко убедиться, что $f_{1}(0)=-1\ne0$. Получаем, что, по определению кратного корня, $0$ — корень многочлена $f(x)$ четвертой кратности.
[свернуть]
Тест на тему "Кратные корни"
Лимит времени: 0
Навигация (только номера заданий)
0 из 6 заданий окончено
Вопросы:
1
2
3
4
5
6
Информация
Проверьте ваши знания на тему «Кратные корни» в данном тесте.
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 6
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Рубрики
Нет рубрики0%
Алгебра0%
1
2
3
4
5
6
С ответом
С отметкой о просмотре
Задание 1 из 6
1.
Количество баллов: 1
Задан многочлен $f(x)=x^4-8x^3+24x^2-32x+16$. Найти кратность корня $2$.
Соотнести кратность корня $-1$ и многочлен которому она соответствует.
Элементы сортировки
$f(x)=x^2-2x-3$
$f(x)=x^2+2x+1$
$f(x)=x^4+3x^3+3x^2+x$
$x^5+6x^4+14x^3+16x^2+9x+2$
$1$
$2$
$3$
$4$
Правильно
Неправильно
Задание 3 из 6
3.
Количество баллов: 5
Задан многочлен $f(x)=\left(x-5\right)^3f_{1}(x)$. Известно, что $f_{1}(x)$ — многочлен степени $3$. Отметьте все возможные кратности корня $5$ для многочлена $f(x)$.
Правильно
Неправильно
Задание 4 из 6
4.
Количество баллов: 1
Пусть $\alpha$ — корень кратности $1$ многочлена $f(x)$. Какое название носит такой корень? (Возможны два варианта)
Правильно
Неправильно
Задание 5 из 6
5.
Количество баллов: 1
Пусть $3$ — корень четвертой кратности многочлена $f(x)$ и корень второй кратности многочлена $g(x)$. Найдите кратность корня $3$ многочлена $f(x)g(x)$.
Правильно
Неправильно
Задание 6 из 6
6.
Количество баллов: 1
Отсортировать многочлены по возрастанию кратности корня $3$.
$f(x)=(x-10)(3x-9)$
$f(x)=(x^2-6x+9)(x^2+6x+9)$
$f(x)=\left(x-3\right)^2(6x-18)$
$f(x)=\left(x^2-9\right)^4$
Правильно
Неправильно
Литература
Личный конспект, составленный на основе лекций Белозерова Г.С.
Для многочленов, также как и для множества целых чисел, можно определить наибольший общий делитель (НОД) и наименьшее общее кратное.
При определении понятия НОД, для начала необходимо ознакомиться с понятием общего делителя двух многочленов. Заранее для краткости и удобства договоримся, что в дальнейшем под понятиями общего делителя и наибольшего общего делителя мы будем подразумевать их аналоги на множестве $P\left[x\right].$
Определение 1 (общий делитель)
Пусть даны $f\left(x\right), g\left(x\right) \in P\left[x\right],$ причем $f\left(x\right), g\left(x\right) \neq 0.$ Тогда общим делителем этих многочленов будет являться многочлен $d\left(x\right) \in P\left[x\right]$ при условии, что $f\left(x\right) \vdots d\left(x\right)$ и $g\left(x\right) \vdots d\left(x\right).$
Замечание. Любая ненулевая константа является общим делителем для любых двух многочленов.
Пример 1. Пусть $f\left(x\right) = x^8-1,$ $g\left(x\right) = x^4-1.$ Для того, чтобы найти общие делители разложим эти многочлены по формуле разности квадратов: $$f\left(x\right) = x^8-1 = \left(x^4-1\right)\left(x^4 + 1\right) = \left(x^2-1\right)\left(x^2 + 1\right)\left(x^4 + 1\right) =\\= \left(x-1\right)\left(x + 1\right)\left(x^2 + 1\right)\left(x^4 + 1\right),$$ $$g\left(x\right) = x^4-1 = \left(x^2-1\right)\left(x^2 + 1\right) = \left(x-1\right)\left(x + 1\right)\left(x^2 + 1\right).$$Как мы видим, общими делителями являются $\left(x-1\right),$ $\left(x + 1\right)$ и $\left(x^2 + 1\right).$
Было бы некорректно применять такое определение НОД, по которому наибольшим общим делителем двух многочленов является их общий делитель наибольшей степени, т.к. оно является слишком обобщенным. Поэтому мы введём такое понятие:
Определение 2 (наибольший общий делитель)
Пусть даны $f\left(x\right), g\left(x\right) \in P\left[x\right],$ причем $f\left(x\right), g\left(x\right) \neq 0.$ Тогда многочлен $d\left(x\right) \in P\left[x\right]$ будет являться их наибольшим общим делителем, если сам будет являться их общим делителем, который делится на любые другие общие делители $f\left(x\right)$ и $g\left(x\right).$ Обозначение: $d\left(x\right) = \left(f\left(x\right), g\left(x\right)\right)$ — НОД для $f\left(x\right), g\left(x\right) \in P\left[x\right].$
Замечание. Пусть $f\left(x\right) = 0$ и $g\left(x\right) = 0.$ Тогда НОД$\left(f\left(x\right), g\left(x\right)\right) = 0.$
Лемма. НОД определен (если существует) с точностью до постоянного ненулевого множителя.
Пусть даны $f\left(x\right), g\left(x\right) \in P\left[x\right],$ для которых $d_1\left(x\right), d_2\left(x\right) \in P\left[x\right]$ — два НОД.
Тогда, по определению, $d_1\left(x\right) \vdots d_2\left(x\right)$ и $d_2\left(x\right) \vdots d_1\left(x\right).$ По свойству делимости $\left(f\left(x\right) \vdots g\left(x\right) \wedge g\left(x\right) \vdots f\left(x\right) \Leftrightarrow \exists c \in P^*: f\left(x\right) = c \cdot g\left(x\right)\right)$ $d_1\left(x\right) = c_1 \cdot d_2\left(x\right),$ $c_1 \in P^*,$ $c_1 = \text{const}.$
Пусть $\exists c_2 \in P^*,$ $c_2 = \text{const}.$ Тогда, если $d_2\left(x\right)$ — общий делитель для $f\left(x\right)$ и $g\left(x\right)$ (по определению), то и $c_2 \cdot d_2\left(x\right)$ — тоже общий делитель. Соответственно, если $d_2\left(x\right)$ — НОД, т.е. делится на любой другой общий делитель (по определению), то и $c_2 \cdot d_2\left(x\right)$ — тоже является НОД.
Пример 2. Возьмём те же $f\left(x\right)$ и $g\left(x\right),$ что и в примере 1: $f\left(x\right) = x^8-1,$ $g\left(x\right) = x^4-1.$ Чтобы найти НОД этих многочленов, разложим их так же, как и в предыдущем примере: $$f\left(x\right) = x^8-1 = \left(x^4-1\right)\left(x^4 + 1\right) = \left(x^2-1\right)\left(x^2 + 1\right)\left(x^4 + 1\right) =\\= \left(x-1\right)\left(x + 1\right)\left(x^2 + 1\right)\left(x^4 + 1\right),$$ $$g\left(x\right) = x^4-1 = \left(x^2-1\right)\left(x^2 + 1\right) = \left(x-1\right)\left(x + 1\right)\left(x^2 + 1\right).$$Очевидно, что наибольшим общим делителем будет являться $\left(x^4-1\right).$
Теперь разберем способ получения НОД двух многочленов. Находить его можно таким же способом, что и для двух целых чисел, — алгоритмом Евклида (или алгоритмом последовательного деления).
Замечание. С помощью этого алгоритма доказывается существование НОД двух многочленов.
Пример 3. Построим НОД для двух многочленов с помощью алгоритма Евклида. Пусть даны $f\left(x\right) = x^4+x^3-3x^2-4x-1$ и $g\left(x\right) = x^4+x^3-x-1.$
$x^4$
$+$
$x^3$
$-$
$3x^2$
$-$
$4x$
$-$
$1$
$x^4$
$+$
$x^3$
$-$
$x$
$-$
$1$
$-$
$3x^2$
$-$
$3x$
$x^4$
$+$
$x^3$
$-$
$x$
$-$
$1$
$1$
$x^4$
$+$
$x^3$
$-$
$x$
$-$
$1$
$x^4$
$+$
$x^3$
$-$
$x$
$-$
$1$
$-$
$3x^2$
$-$
$3x$
$-$
$\frac{1}{3}x^2$
$-$
$3x^2$
$-$
$3x$
$-$
$3x^2$
$-$
$3x$
$0$
$-$
$x$
$-$
$1$
$3x$
Последний ненулевой остаток и будет являться НОД этих многочленов, т.е. НОД$\left(f\left(x\right), g\left(x\right)\right) = -x-1.$
Может возникнуть случай, когда НОД двух многочленов будет равен $1.$ При этом говорят, что многочлены являются взаимно простыми.
Пример 4. Пусть даны $f\left(x\right) = -x^3+x-1$ и $g\left(x\right) = x-2.$ Найдем их НОД. Для удобства умножим $f\left(x\right)$ на $-1,$ получим $f\left(x\right) = x^3-x+1.$
$x^3$
$+$
$0x^2$
$-$
$x$
$+$
$1$
$x^3$
$+$
$2x^2$
$2x^2$
$-$
$x$
$+$
$1$
$2x^2$
$-$
$4x$
$3x$
$+$
$1$
$3x$
$-$
$6$
$7$
$x$
$-$
$2$
$x^2$
$+$
$2x$
$+$
$3$
Таким образом, многочлен $q\left(x\right) = x^2+2x+3$ — частное деления многочленов, а $r\left(x\right) = 7$ — остаток. Дальнейшее деление можно не продолжать, т.к. и так понятно, что в следующем остатке мы получим $0,$ т.е. $7$ будет последним ненулевым остатком, после умножения которого на $\displaystyle\frac{1}{7},$ НОД$\left(f\left(x\right), g\left(x\right)\right) = 1.$ Следовательно, $f\left(x\right)$ и $g\left(x\right)$ — взаимно простые.
Также стоит упомянуть и линейное представление НОД:$$d\left(x\right) = f\left(x\right) \cdot u\left(x\right) + g\left(x\right) \cdot v\left(x\right),$$ где $f\left(x\right), g\left(x\right), u\left(x\right), v\left(x\right) \in P\left[x\right],$ а $d\left(x\right) = \left(f\left(x\right), g\left(x\right)\right).$
Примеры решения задач
Определить наибольший общий делитель многочленов:
$f\left(x\right) = x^2-9$ и $g\left(x\right) =x^3-27;$
$f\left(x\right) = x^5+x^3+x$ и $g\left(x\right) = x^4+x^3+x;$
Решение (пример a.)
Для построения НОД воспользуемся алгоритмом Евклида. Так как степень многочлена $g\left(x\right)$ больше степени многочлена $f\left(x\right),$ то мы будем делить $g\left(x\right)$ на $f\left(x\right).$
$x^3$
$+$
$0x^2$
$+$
$0x$
$-$
$27$
$x^3$
$-$
$9x$
$9x$
$-$
$27$
$x^2$
$-$
$9$
$x$
После первого деления мы получили остаток $r_1\left(x\right) = 9x-27.$ Для удобства мы можем умножить его на $\displaystyle\frac{1}{9}.$ Получим $r_1\left(x\right) = x-3.$
Продолжаем наше деление, только в этот раз мы делим многочлен $g\left(x\right)$ на остаток $r_1\left(x\right).$
$x^2$
$+$
$0x$
$-$
$9$
$x^2$
$-$
$3x$
$3x$
$-$
$9$
$3x$
$-$
$9$
$0$
$x$
$-$
$3$
$x$
$+$
$3$
Теперь в остатке мы получили $0$ — значит деление закончено. Последний ненулевой остаток и будет являться НОД многочленов $f\left(x\right)$ и $g\left(x\right).$ В нашем случае это $x+3.$
Пользуясь алгоритмом Евклида, убедиться в том, что многочлены $f\left(x\right)$ и $g\left(x\right)$ взаимно простые, и подобрать $u\left(x\right)$ и $v\left(x\right)$ так, чтобы $f\left(x\right) \cdot u\left(x\right) + g\left(x\right) \cdot v\left(x\right) = 1:$ $$f\left(x\right) = 3x^3-2x^2+x+2,\\ g\left(x\right) =x^2-x+1.$$
Решение
Как и сказано в условии задачи, воспользуемся алгоритмом Евклида, чтобы проверить равен ли НОД наших многочленов $1.$ В отличии от прошлого задания, здесь надо запоминать все частные и остатки.
$3x^3$
$-$
$2x^2$
$+$
$x$
$+$
$2$
$3x^3$
$-$
$3x^2$
$+$
$3x$
$x^2$
$-$
$2x$
$+$
$2$
$x^2$
$-$
$x$
$+$
$1$
$-$
$x$
$+$
$1$
$x^2$
$-$
$x$
$+$
$1$
$3x$
$+$
$1$
$=$
$q_1\left(x\right)$
Получили остаток $r_1\left(x\right) = -x+1.$ Продолжаем деление.
$x^2$
$-$
$x$
$+$
$1$
$x^2$
$-$
$x$
$1$
$-$
$x$
$+$
$1$
$-$
$x$
$=$
$q_2\left(x\right)$
$r_2\left(x\right) = 1,$ следовательно НОД$\left(f\left(x\right), g\left(x\right)\right) = 1,$ значит, наши многочлены взаимно простые и можно продолжать решать. Запишем многочлены в таком виде:$$\begin{cases} f\left(x\right) = g\left(x\right) \cdot q_1\left(x\right) + r_1\left(x\right); \\ g\left(x\right) = r_1\left(x\right) \cdot q_2\left(x\right) + r_2\left(x\right). \end{cases}$$ Выразим $r_1\left(x\right)$ из первого равенства и подставим во второе:$$\begin{cases} r_1\left(x\right) = f\left(x\right)-g\left(x\right) \cdot q_1\left(x\right); \\ g\left(x\right) = \left(f\left(x\right)-g\left(x\right) \cdot q_1\left(x\right)\right) \cdot q_2\left(x\right) + r_2\left(x\right). \end{cases}$$ Помня про то, что $r_2\left(x\right) = d\left(x\right),$ продолжаем наши преобразования:$$f\left(x\right) \cdot \left(-q_2\left(x\right)\right) + g\left(x\right) \cdot \left(1 + q_1\left(x\right) \cdot q_2\left(x\right)\right) = d\left(x\right).$$ Подставляем значения:$$f\left(x\right) \cdot \left(x\right) + g\left(x\right) \cdot \left(-3x^2-x+1\right) = d\left(x\right).$$
Если сравнить данное равенство с формулой линейного представления НОД, мы увидим, что получили $u\left(x\right) = x$ и $v\left(x\right) = -3x^2-x+1.$
Пользуясь алгоритмом Евклида, найти многочлены $u\left(x\right)$ и $v\left(x\right)$ такие, чтобы они удовлетворяли равенству $f\left(x\right) \cdot u\left(x\right) + g\left(x\right) \cdot v\left(x\right) = d\left(x\right),$ где $d\left(x\right)$ — НОД многочленов $f\left(x\right)$ и $g\left(x\right):$ $$f\left(x\right) = x^4+2x^3-x^2-4x-2,\\ g\left(x\right) = x^4+x^3-x^2-2x-2.$$
Решение
Для начала необходимо построить НОД. Для этого используем алгоритм Евклида.
$x^4$
$+$
$2x^3$
$-$
$x^2$
$-$
$4x$
$-$
$2$
$x^4$
$+$
$x^3$
$-$
$x^2$
$-$
$2x$
$-$
$2$
$x^3$
$-$
$2x$
$x^4$
$+$
$x^3$
$-$
$x^2$
$-$
$2x$
$-$
$2$
$1$
$=$
$q_1\left(x\right)$
Получили остаток $r_1\left(x\right) = x^3-2x.$ Делим дальше.
$x^4$
$+$
$x^3$
$-$
$x^2$
$-$
$2x$
$-$
$2$
$x^4$
$-$
$2x^2$
$x^3$
$+$
$x^2$
$-$
$2x$
$-$
$2$
$x^3$
$-$
$2x$
$x^2$
$-$
$2$
$x^3$
$-$
$2x$
$x$
$+$
$1$
$=$
$q_2\left(x\right)$
Второй остаток $r_2\left(x\right) = x^2-2.$ Выполняем последнее деление.
$x^3$
$-$
$2x$
$x^3$
$-$
$2x$
$0$
$x^2$
$-$
$2$
$x$
$=$
$q_3\left(x\right)$
$r_3\left(x\right) = 0,$ следовательно НОД$\left(f\left(x\right), g\left(x\right)\right) = x^2-2.$ Дальнейшие наши действия ведутся по тому же принципу, что и в прошлой задаче, поэтому запишем многочлены в таком виде:$$\begin{cases} f\left(x\right) = g\left(x\right) \cdot q_1\left(x\right) + r_1\left(x\right); \\ g\left(x\right) = r_1\left(x\right) \cdot q_2\left(x\right) + r_2\left(x\right). \end{cases}$$ Выразим $r_1\left(x\right)$ и подставим его во второе равенство:$$\begin{cases} r_1\left(x\right) = f\left(x\right)-g\left(x\right) \cdot q_1\left(x\right); \\ g\left(x\right) = \left(f\left(x\right)-g\left(x\right) \cdot q_1\left(x\right)\right) \cdot q_2\left(x\right) + r_2\left(x\right). \end{cases}$$ Помним, что $r_2\left(x\right) = d\left(x\right),$ поэтому делаем замену:$$f\left(x\right) \cdot \left(-q_2\left(x\right)\right) + g\left(x\right) \cdot \left(1 + q_1\left(x\right) \cdot q_2\left(x\right)\right) = d\left(x\right).$$ Подставляем значения:$$f\left(x\right) \cdot \left(-x-1\right) + g\left(x\right) \cdot \left(x+2\right) = d\left(x\right).$$
Итак, мы получили $u\left(x\right) = -x-1$ и $v\left(x\right) = x+2.$ На этом можно и закончить, но иногда стоит перепроверить правильность своих вычислений. Для проверки нам необходимо вместо $f\left(x\right)$ и $g\left(x\right)$подставить их значения, а после раскрыть скобки. Если в итоге мы получим многочлен равный построенному НОД, то $u\left(x\right)$ и $v\left(x\right)$ подобраны верно. В нашем случае все сходится, а значит мы можем записывать их в ответ.
Для построения НОД двух многочленов необходимо воспользоваться алгоритмом (Евклида), другое название которого - алгоритм последовательного деления.
Деление нужно продолжать до того момента, когда мы получим в остатке (ноль, 0, нуль, нулевой многочлен). Тогда наибольшим общим делителем многочленов будет являться последний (ненулевой, отличный от нуля, отличный от ноля, отличный от 0) остаток.
Действительно, брать произведения элементов по одному из каждой строки и по одному из каждого столбца исходной матрицы — то же самое, что делать это по отношению к транспонированнойматрице. Далее, номера строк для исходной матрицы — это номера столбцов для транспонированной, а номера столбцов исходной матрицы — суть номера строк транспонированной. Поэтому каждое слагаемое входит в состав определителя исходной матрицы и определителя транспонированной с одним и тем же множителем.
Действительно, по Теореме №$2$ о транспозиции — транспозиция меняет четность элементов перестановки. При перестановке двух строк, каждый элемент меняет знак, значит и сам определитель меняет знак.
Пусть на $\alpha$ умножаются все элементы $i$-той строки. Каждый член определителя содержит $1$ элемент из этой строки, поэтому всякий член определителя приобретает общий множитель $\alpha$, а это значит что и сам определитель умножается на $\alpha$.
[свернуть]
Свойство $4$
Если все элементы $i$-той строки (столбца) матрицы определителя разбить в сумму двух строк: $$a_{i j}=b_{j}+c_{j}, \quad j=1, \ldots, n$$ то и саму матрицу можно будет разбить на две, у которых все строки (столбцы) кроме $i$-той — такие же как у первой матрицы, а $i$-тая строка состоит из $b_{j}$ в первой матрице определителя, и из элементов $c_{j}$ во втором.
Доказательство
Действительно, любой член матрицы определителя можно представить в виде произведения: $$\begin{aligned}a_{1 \alpha_{1}} a_{2 \alpha_{2}} \ldots a_{i \alpha_{i}} \ldots a_{n \alpha_{n}}&=a_{1 \alpha_{1}} a_{2 \alpha_{2}} \ldots\left(b_{\alpha_{i}}+c_{\alpha_{i}}\right)\ldots a_{n \alpha_{n}}=\\&=a_{1 \alpha_{1}} a_{2 \alpha_{2}} \ldots b_{\alpha_{i}} \ldots a_{n \alpha_{n}}+a_{1\alpha_{1}} a_{2 \alpha_{2}} \ldots c_{\alpha_{i}} \ldots a_{n\alpha_{n}}.\end{aligned}.$$ Объединяя первые слагаемые этого выражения, мы получим матрицу определителя, где в первой матрице в $i$-той строке вместо элементов $a_{i j}$ стоят элементы$b_{j} .$ Соответственно вторые слагаемые составляют матрицу определителя, с элементами $c_{j}$ таким образом: $$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1 n} \\a_{1}+c_{1} & b_{2}+c_{2} & \dots & b_{n}+c_{n} \\a_{n 1} & a_{n 2} & \dots & a_{n n}\end{vmatrix}=$$$$=\begin{vmatrix}a_{11} & a_{12} & \dots a_{1 n} \\b_{1} & b_{2} & \dots & b_{n} \\a_{n 1} & a_{n 2} & \dots & a_{nn}\end{vmatrix}+\begin{vmatrix}a_{11} & a_{12} & \dots & a_{1 n} \\c_{1} & c_{2} &\dots & c_{n} \\a_{n 1} & a_{n 2} & \dots & a_{n n}\end{vmatrix}.$$
Действительно, так как определитель есть произведение одного из элементов строки (столбца) его матрицы, то у первого столбца единственным будет $a_{11}$, во втором столбце — $a_{22}$ т.к. у первой строки $a_{11}$, третьим элементом — только $a_{33}$, далее аналогично.
Этот определитель можно представить в виде суммы определителей (по $4$ свойству), в итоге получится $2$ определителя, один из которых будет равен нулю, из-за равенства двух строк, а второй будет исходным.
Определение 1. Пусть линейное пространство называется конечномерным, если существует такая константа $M \in \mathbb{N}$, так что любая линейно независимая система (далее ЛНЗ) содержит не более $M$ векторов. В противном случае пространство называется бесконечномерным.
Замечание. Нулевое пространство будем считать конечномерным.
Пример 1. Бесконечномерным пространством является $(R[x], \mathbb{R})$. Рассмотрим систему векторов $\left\langle 1, x, x^{2}, \ldots, x^{n}\right\rangle.$ Это система ЛНЗ, так как из равенства $\alpha_{0} \cdot 1+\alpha_{1}\cdot x+\alpha_{2} \cdot x^{2}+\ldots+\alpha_{k}\cdot x^{k}=0$ следует, что $\alpha_{0}=\alpha_{1}=\alpha_{2}= \ldots =\alpha_{k}=0.$ Так как $k$ произвольно, то не существует ограничения $M$.
Пример 2. Пусть $X$ — конечномерное пространство. Рассмотрим в нем ЛНЗ систему, содержащую максимальное число векторов: $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle.$ Дополняя эту систему произвольным векторм $y$, получаем уже линейно зависимую систему: $\left\langle x_{1}, x_{2}, \ldots, x_{m}, y\right\rangle.$ Тогда вектор $y$ линейно выражается через исходную систему, а именно: $$y=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{m} x_{m}.$$
Лемма 1. Каждое подпространство конечномерного пространства в свою очередь конечномерно.
Лемма 2. Каждое подпространство есть линейная оболочка некоторой своей системы.
Конечномерность
Лимит времени: 0
Навигация (только номера заданий)
0 из 3 заданий окончено
Вопросы:
1
2
3
Информация
Тест для проверки знаний по теме «Конечномерность».
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 3
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
1
2
3
С ответом
С отметкой о просмотре
Задание 1 из 3
1.
Расставьте соотвественно:
Элементы сортировки
$M_{2}(\mathbb{R})$
$(R[x], \mathbb{R})$
$(X,\mathbb{P})$
Конечномерно
Бесконечномерно
Нельзя определить
Задание 2 из 3
2.
Дополните формулировку:
Каждое подпространство конечномерного пространства в свою очередь (конечномерно, Конечномерно).
Задание 3 из 3
3.
Выберите подходящий ответ:
Каждое подпространство есть линейная некоторой своей системы.
Литература
Личный конспект, составленный на основе лекций Белозерова Г.С..
Базис имеет огромное значение при изучении конечномерных линейных пространств, и часто используется в различных исследованиях. Он позволяет очень легко описать строение любого линейного пространства, заданного над произвольным полем.
Любой вектор $x$ из линейного пространства $X$ может быть представлен в виде линейной комбинации $$x =\alpha_{1} e_{1}+\alpha_{2} e_{2}+\ldots+\alpha_{n} e_{n},$$ где $\alpha_{1},\alpha_{2} \ldots\alpha_{n}$ — некоторые числа из поля, а $e_{1}, e_{2}, \ldots, e_{n}$ — базис $X$. Данная линейная комбинация называется разложением вектора $x$ по базису, а сами числа $\alpha_{1},\alpha_{2} \ldots\alpha_{n}$ называются координатами вектора $x$ относительно этого базиса.
Лемма 1. Каждое конечномерное пространство является линейной оболочкой своего базиса.
Определение 2. Любые два базиса конечномерного пространства представляют из себя эквивалентные системы.
Из определения 2 получаем числовую характеристику пространства.
Определение 3. Размерностью ненулевого конечномерного пространства называется число векторов его базиса. Размерность нулевого пространства равна $0$.
Обозначение для размерности пространства $X$: $\operatorname{dim} Х$.
Свойства базиса
Любая линейно независимая система $n$-мерного пространства, содержащая $n$ векторов, является базисом этого пространства.
Любая система $n$-мерного пространства, содержащая более $n$ векторов линейно зависима.
Любой вектор конечномерного пространства однозначно линейно выражается через базис.
Еще одно свойство базиса сформулируем в виде небольшой леммы и докажем ее.
Лемма 2. Каждую линейно независимую систему векторов конечномерного пространства можно пополнить до базиса этого пространства.
Пусть задано линейное пространство $X$ над произвольным полем $\mathbb{P}$. Пусть в этом пространстве задана ЛНЗ система векторов $\left\langle x_{1}, x_{2}, \ldots, x_{k}\right\rangle.$ А размерность $\operatorname{dim} Х = n $.
При $k=n$ очевидно, что наша система векторов сама является базисом(свойство $1$).
При $k<n$ рассмотрим множество всех ЛНЗ систем $x$, для которых наша система — подсистема. Выберем систему содержащую максимальное количество векторов: $$\langle x_{1}, \ldots, x_{k}, x_{k+1}, \ldots x_{s}\rangle.$$
Эта система максимально ЛНЗ в $X$, следовательно она является базисом. Тогда $s=n$ и отсюда следует, что $\langle x_{k+1}, \ldots x_{n} \rangle$ — искомое дополнение.
Лемма 3 (критерий базиса). Система векторов является базисом пространства тогда и только тогда, когда она максимально линейно независима.
Примеры решения задач
Рассмотрим несколько типовых задач нахождения базиса и размерности.
Показать, что следующая система векторов образуют линейное пространство. Найти базис и размерность. Все $n$-мерные векторы вида $(\alpha, \beta, \alpha, \beta, \alpha, \beta, \ldots)$, где $\alpha$ и $\beta$ — любые числа. $$L=\{x=(\alpha, \beta, \alpha, \beta, \ldots) | \alpha, \beta \in \mathbb{R}\}$$ Решение
$$\forall x, y \in L: \forall a, b \in \mathbb{R}(a x+b y) \in L ?$$
Покажем, что система векторов образуют линейное пространство: $$a x+b y=a \cdot(\alpha, \beta, \alpha, \beta \ldots)+b(\varphi, \gamma, \varphi, \gamma \ldots) =$$ $$=(a \alpha, a \beta, a \alpha, a \beta \ldots)+(\varphi b, \gamma b, \varphi b, \gamma b \ldots)=$$ $$=(a \alpha+b \varphi, a \beta+\gamma b, a \alpha+b \varphi, a \beta+\gamma b \ldots) \in L.$$
Следовательно, $\left\langle e_{1}^{\prime}, e_{2}^{\prime}\right\rangle$ — базис $L$. Размерность равна 2.
Определить является ли $L$ линейным подпространством пространства $X$. Найти базис и размерность. $$X=M_{2}(\mathbb{R})$$ $$L=\left\{\left(\begin{array}{l} a & b \\ c & d \end{array}\right) \in M_{2}(\mathbb{R}) | a+b+c=d\right\}.$$ Решение
$$\forall A, B \in L, \forall \alpha, \beta \in \mathbb{R}$$ $$\alpha A+\beta B \in L ?$$
Покажем, что через нашу ЛНЗ систему выражается каждый вектор этого пространства. Вспомним, что по условию $d = a + b + c.$ Отсюда следует, что $$a \cdot\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)+b \cdot\left(\begin{array}{ll} 0 & 1 \\ 0 & 1 \end{array}\right)+c\left(\begin{array}{ll} 0 & 0 \\ 1 & 1 \end{array}\right)=$$ $$=\left(\begin{array}{cc}a & b \\c & a+b+c \end{array}\right)=\left(\begin{array}{cc}a & b \\c & d\end{array}\right)=A \Rightarrow $$ $\Rightarrow \forall A \in L$ линейно выражается через $E^{\prime}$. А так как мы доказали, что $E^{\prime}$ — ЛНЗ, то $E^{\prime}$ — базис $L$. Размерность равна 3.
Определить является ли $L$ линейным подпространством пространства $X$. Найти базис и размерность. $$X=\mathbb{R}_{4}[x]$$ $$L=\left\{f(x)=\mathbb{R}_{4}[x] | f(x): x^{2}+2\right\}.$$ Решение
Пусть $f(x) \in L$ и $f(x): x^{2}+2$, тогда $$f(x)=\left(x^{2}+2\right) \cdot\left(a x^{2}+b x+c\right).$$
Докажем, что $$\forall \alpha, \beta \in \mathbb{R}, \forall f(x), g(x) \in L ?$$
$$\alpha(a x^{2}+b x+c)+\beta(a x^{2}+b x+c)=$$ $$(x^{2}+2)(\alpha a x^{2}+\alpha b x+\alpha c+\beta a x^{2}+\beta b x+\beta c)=$$ $$(x^{2}+2)(\alpha a x^{2}+\beta a x^{2}+\alpha b x+\beta b x+\alpha c+\beta c) \in L$$
Теперь найдем базис: $$f(x)=a x^{4}+b x^{3}+x^{2} c+2 a x^{2}+2 b x+2 c,$$ тогда $$a\left(x^{4}+2 x^{2}\right)+b(x^{3}+2 x)+c(x^{2}+2)$$ и следовательно $$\begin{array}{l}e_{1}=x^{4}+2 x^{2} \\ e_{2}=x^{3}+2 x \\ e_{3}=x^{2}+2 \end{array}$$
Покажем, что через нашу ЛНЗ систему выражается каждый вектор этого пространства. $$\forall f(x) \in L : f(x)=a x^{4}+b x^{3}+x^{2} c+2 a x^{2}+2 b x+2 c$$ $$\exists \alpha_{1}=a, \alpha_{2}=b, \alpha_{3}=c.$$
Тогда $$\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}=$$ $$= a(x^{4}+2 x^{2})+b(x^{3}+2 x)+c(x^{2}+2)$$ $$a x^{4}+2 a x^{2}+b x^{3}+2 b x+c x^{2}+2 c=$$ $$=a x^{4}+b x^{3}+x^{2} c+2 a x^{2}+2 b x+2 c = f(x) \Rightarrow$$ $\Rightarrow \forall f(x)$ линейно выражается через любой вектор $e=\langle e_{1}, e_{2}, e_{3}\rangle$. Тогда $e$ — базис. Размерность равна 3.
Базис и размерность линейного пространства, свойства
Лимит времени: 0
Навигация (только номера заданий)
0 из 5 заданий окончено
Вопросы:
1
2
3
4
5
Информация
Тест для проверки знаний по теме «Базис и размерность линейного пространства, свойства».
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 5
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Дополните определение:
Базисом конечномерного пространства называется такая (линейно независимая, ЛНЗ, лнз) система векторов этого пространства, через которую линейно выражается каждый вектор этого пространства.
Задание 2 из 5
2.
Как называется числовая характеристика линейного пространства?
Задание 3 из 5
3.
Что представляют любые два базиса конечномерного пространства?
Задание 4 из 5
4.
Выберите только верные формулировки свойств.
Задание 5 из 5
5.
Расставить базисы в порядке уменьшения размерности(от большего к меньшему).
$z=\langle z_{1}, z_{2}, z_{3}, z_{4}\rangle$
$e=\langle e_{1}, e_{2}, e_{3}\rangle$
$g=\langle g_{1}, g_{2}\rangle$
Литература
Личный конспект, составленный на основе лекций Белозерова Г.С..