17 Степенные ряды

Степенным рядом называется ряд вида $\displaystyle\sum_{n=0}^{\infty} a_n(x-x_0)^n,$ где $x_0$ — фиксированная точка, $\{ a_n \}$ — числовая последовательность. Числа $a_n(n = 0,1,…)$ называются коэффициентами ряда, точка $x_0$ — центром ряда. Будем рассматривать ряды вида $\displaystyle\sum_{n=0}^{\infty} a_nx^n,$ т. е. полагаем $x_0 = 0.$

Пример
Ряд $\displaystyle\sum_{n=0}^{\infty}x^n $ — сумма геометрической прогрессии. Этот ряд сходится при $|x| \lt 1$ и расходится при $|x| \ge 1.$

17.2 Вычисление радиуса сходимости степенного ряда

Теорема. Пусть дан степенной ряд $$\begin{equation}\sum\limits_{n=0}^\infty a_nx^n\label{eq:1} \end{equation}$$ Если существует $$\lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|} \equiv p \gt 0,$$ то радиус сходимости ряда $\eqref{eq:1}$ равен $R = \frac{1}{p}$. Если для любого $n$ числа $a_n \neq 0$ и существует $$\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| \equiv p^* \gt 0,$$ то $$R = \frac{1}{p^*} = \lim\limits_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|.$$

Для доказательства первого утверждения применим признак Коши. Для фиксированного $x$ имеем $$\sqrt[n]{\left|a_nx^n\right|} = \sqrt[n]{a_n}\cdot\left|x\right|\to p\left|x\right|\left(n\to\infty\right). $$Если $\left|x\right|\lt\frac{1}{p}$, то $ρ\left|x\right|\lt 1$ и, по признаку Коши, ряд $\eqref{eq:1}$ сходится абсолютно. Если $\left|x\right|\gt\frac{1}{p}$, то $p\left|x\right|\gt 1$ и, следовательно, ряд $\eqref{eq:1}$ расходится, т. к. не выполнено необходимое условие сходимости.
Доказательство второго утверждения теоремы легко можно провести аналогично, используя признак Даламбера (проведите самостоятельно). Мы покажем, что из существования предела $ρ^∗$ следует существование предела $ρ$ и их равенство $ρ = ρ^∗$. Ясно, что отсюда также будет следовать второе утверждение теоремы.
Зададим $\epsilon \gt 0$ и найдем такой номер $N$, что для всех $n \geq N$ справедливо неравенство $$\left|\left|\frac{a_{n+1}}{a_n}\right|-p^*\right|\lt\epsilon.$$ Тогда $$p^*-\epsilon\lt\left|\frac{a_{n+1}}{a_n}\right|\lt p^*+\epsilon$$ т. е.
$$\left|a_n\right|\left(ρ^∗−\epsilon\right)\lt\left|a_{n+1}\right|\lt\left|a_n\right|\left(ρ^∗+\epsilon\right).$$ Применяя рекуррентно левое неравенство, получаем $$\left|a_{N+1}\right|\gt\left(ρ^∗−\epsilon\right)\left|a_N\right|,$$ $$\left|a_{N+2}\right|\gt\left(ρ^∗\epsilon\right)^2\left|a_N\right|,\dotsi,\left|a_{N+k}\right|\gt\left(ρ^∗-\epsilon\right)^k\left|a_N\right|,\dotsi,$$ а из правого неравенства следует, что $$\left|a_{N+k}\right|\lt\left(ρ^∗+\epsilon\right)^k\left|a_N\right| \left(k = 1, 2,\dotsi\right).$$
Пусть $n\gt N$, т. е. $n = N+k$, где $k\in N$. Тогда $$\sqrt[n]{\left|a_n\right|}\lt\left(ρ^∗+\epsilon\right)^{\frac{n−N}{n}}\left|a_N\right|^{\frac{1}{n}} = (ρ^∗+\epsilon)^{1-\frac{N}{n}}\sqrt[n]{\left|a_N\right|}.$$ При фиксированном $N$ выражение справа стремится к $ρ^∗+\epsilon$ при $n\to\infty$. Поэтому при $n\geq N_1$ оно меньше, чем $ρ^∗+2\epsilon$. Аналогично можно показать, что при $n\geq N_2$ справедливо неравенство $\sqrt[n]{\left|a_n\right|}\gt ρ^∗−2\epsilon$. Получим, что при $n\geq N_3 \equiv max \left(N_1, N_2\right)$ имеет место неравенство $$ρ^∗−2\epsilon\lt\sqrt[n]{\left|a_n\right|}\lt ρ^∗+2\epsilon,$$ а это означает, что существует $$ρ\equiv \lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|} = ρ^∗.$$

Замечание 1. Если в условии теоремы считать, что $\frac{1}{0} = +\infty$ и $\frac{1}{+\infty} = 0$, то теорема остается справедливой и в случаях $ρ = 0$ и $ρ = +\infty$. При этом необходимые изменения в доказательстве очевидны (проведите самостоятельно).

Замечание 2. Во второй части доказательства нашей теоремы мы,
по существу, доказали, что из существования $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}\left(a_n\gt 0\right)$ следует, что существует и $\lim\limits_{n\to\infty}\sqrt[n]{a_n}$, и эти пределы равны. Для рядов с
положительными слагаемыми это означает, что признак Коши не слабее
признака Даламбера.

Итак, мы можем находить радиус сходимости $R = \frac{1}{ρ}$ степенного ряда $\eqref{eq:1}$ в случае если существует $$ρ = \lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|},$$ где $0\leq ρ\leq +\infty$. Но предел $ρ$ может и не существовать. В общем случае радиус сходимости ряда $\eqref{eq:1}$ находится следующим образом.

Теорема Коши – Адамара. Пусть дан степенной ряд $$\begin{equation}\sum\limits_{n=0}^\infty a_nx^n.\label{eq:2} \end{equation}$$ Тогда его радиус сходимости равен $$R =\dfrac{1}{\overline{\lim\limits_{n\to\infty}}\sqrt[n]{\left|a_n\right|}},$$ где понимается $\frac{1}{0} = +\infty$ и $\frac{1}{+\infty} = 0$.

Доказательство этой теоремы основано на применении обобщенного признака Коши сходимости рядов с положительными слагаемыми.

Теорема (обобщенный признак Коши). Пусть дан числовой ряд $$\begin{equation}\sum\limits_{n=0}^\infty u_n,\label{eq:3} \end{equation}$$ где числа $u_n \geq 0$. Если $\overline{\lim\limits_{n\to\infty}}\sqrt[n]{u_n}\lt 1$, то ряд $\eqref{eq:3}$ сходится, а если $\overline{\lim\limits_{n\to\infty}}\sqrt[n]{u_n}\gt 1$, то ряд $\eqref{eq:3}$ расходится.

Если $\overline{\lim\limits_{n\to\infty}}\sqrt[n]{u_n}\gt 1$, то существует подпоследовательность номеров $n_k$, таких, что $u_{n_k}\geq 1$, а значит, $u_n$ не стремится к нулю, и следовательно, ряд $\eqref{eq:3}$ расходится, т. к. не выполнено необходимое условие сходимости. Если же $\overline{\lim\limits_{n\to\infty}}\sqrt[n]{u_n}\equiv q\lt 1$, то для $0\lt\epsilon\lt 1−q$ найдется такой номер $N$, что для всех $n\geq N$ справедливо неравенство $\sqrt[n]{u_n}\lt q+\epsilon\lt 1$. Отсюда следует, что $u_n\lt\left(q+\epsilon\right)n$ при $n \geq N$ и, значит, ряд $\eqref{eq:3}$ сходится в силу признака сравнения.

(Теоремы Коши – Адамара). Имеем $$\overline{\lim\limits_{n\to\infty}}\sqrt[n]{\left|a_nx^n\right|} = \overline{\lim\limits_{n\to\infty}}\sqrt[n]{\left|a_n\right|}\cdot\left|x\right|.$$ Если $\left|x\right|\gt\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|}}$,
то для ряда $\sum\limits_{n=0}^\infty\left|a_nx^n\right|$ не выполнено необходимое условие сходимости.
Следовательно, необходимое условие сходимости не выполнено и для ряда
$\eqref{eq:2}$, т. е. он расходится.

Примеры:

Пример 1. Рассмотрим ряд $$\sum\limits_{n=0}^\infty nx^n.$$ Здесь $a_n = n, \lim\limits_{n\to\infty}\sqrt[n]{a_n} = \lim\limits_{n\to\infty}\sqrt[n]{n} = 1$, т. е. $R = \dfrac{1} {\lim\limits_{n\to\infty}\sqrt[n]{a_n}} = 1$. В точках $x = R = 1$ и $x = −R = −1$ ряд расходится. Область его сходимости
– интервал$\left(−1, 1\right)$.
Пример 2. Для ряда $$\sum\limits_{n=0}^\infty\left[3 + (−1)n\right]^nx_n$$
имеем $a_n = [3 + (−1)n]^n$, $\overline\lim\limits_{n\to\infty}\sqrt[n]{a_n} = \overline\lim\limits_{n\to\infty}\left[3 + (−1)n\right] = 4$, $R = \frac{1}{4}$. Данный ряд сходится при $\left|x\right|\lt\frac{1}{4}$. Если $x = \pm\frac{1}{4}$, то $\left|a_{2k}x^{2k}\right|= 4^{2k}\frac{1}{4^{2k}} = 1$, т. е. слагаемые с четными номерами равны $1$ и
предел слагаемых ряда не равен нулю. Окончательно, область сходимости
ряда – интервал $\left(−\frac{1}{4}, \frac{1}{4}\right)$.
Пример 3. Для ряда $$\sum\limits_{n=0}^\infty\frac{\left(n!\right)^2}{\left(2n!\right)}x^n$$ имеем $a_n = \frac{\left(n!\right)^2}{\left(2n!\right)}$,$\lim\limits_{n\to\infty}\dfrac{\frac{\left(\left(n+1\right)!\right)^2}{\left(2\left(n+1\right)\right)!}}{\frac{\left(n!\right)^2}{\left(2n\right)!}} = \lim\limits_{n\to\infty}\frac{\left(\left(n+1\right)!\right)^2\left(2n\right)!}{\left(2n+2\right)!\left(n!\right)^2} = \lim\limits_{n\to\infty}\frac{\left(n+1\right)^2}{\left(2n+1\right)\left(2n+2\right)} = \frac{1}{4}$, $R = 4$. Данный ряд сходится при $\left|x\right|\lt 4$.
При $x = 4$ получаем числовой ряд $\sum\limits_{n=1}^\infty a_n$, где $a_n = \frac{\left(n!\right)^24^n}{\left(2n\right)!}$. Поскольку $\frac{a_n}{a_{n+1}} = 1-\frac{1}{2n}+\frac{1}{2n\left(n+1\right)}$, то $a_n\lt a_{n+1}$. Это означает, что последовательность $\left(a_n\right)$ монотонно возрастает. Следовательно не выполняется необходимое условие для сходимости ряда (предел общего члена отличен от нуля), ряд расходится. Аналогично для $x = -4$. Окончательно, область сходимости
ряда – интервал $\left(−4, 4\right)$.
Пример 4. Рассмотрим ряд $$\sum\limits_{n=0}^\infty \left(1+\frac{1}{n}\right)^{n^2}x^n.$$ $\frac{1}{R} = \lim\limits_{n\to\infty}\left(1+\frac{1}{n}\right)^{n^2} = e^2$. Следовательно при $\left|x\right|\lt \frac{1}{e^2}$ сходится абсолютно. В точках $x = R = \frac{1}{e^2}$ и $x = −R = −\frac{1}{e^2}$ ряд расходится. Область его сходимости
– интервал$\left(−\frac{1}{e^2}, \frac{1}{e^2}\right)$.

Тест по теме: "Радиус сходимости числового ряда"

Небольшой тест по теории и практике.

Литература

  1. Б. П. Демидович Сборник задач по математическому анализу 13-е издание, исправленное Издательство Московского университета Издательство ЧеРо 1997 отдел V ряды (ст. 284)
  2. В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2010, ч.2. раздел 17 «Вычисление радиуса сходимости степенного ряда». (ст. 56 — 60)
  3. Кудрявцев Л. Д. курс математического анализа : учебник для вузов: В 3 т. Т. 2. Радиус сходимости и круг сходимости степенного ряда / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дорфа, 2003. — 720 с. (ст. 107 — 108).

17.1 Структура множества точек сходимости степенного ряда

Структуру множества точек сходимости степенного ряда устанавливает

Первая теорема Абеля. Пусть степенной ряд $$\sum_{n=0}^{\infty} a_nx^n \tag {17.1} $$ сходится в некоторой точке $x_1 \ne 0.$ Тогда ряд $(17.1)$ абсолютно сходится в каждой точке $x,$ такой, что $|x| \lt |x_1|.$

Из сходимости числового ряда $\displaystyle\sum_{n=0}^{\infty} a_nx_1^n$ следует, что его слагаемые стремятся к нулю и, следовательно, ограничены, т. е. существует такое $M,$ что для всех $n = 0,1,…$ справедливо неравенство $|a_nx_1^n| \le M.$ Поэтому для $|x| \lt |x_1|$ имеем $$|a_nx^n| = |a_nx_1^n| \cdot \left| \frac {x}{x_1}\right|^{n} \le M \cdot \left| \frac {x}{x_1}\right|^{n}.$$ Поскольку $q = \left| \frac {x}{x_1}\right| \lt 1,$ то ряд $\displaystyle\sum_{n=0}^{\infty}q^n $ сходится. Значит, по признаку сравнения сходится и ряд $\displaystyle\sum_{n=0}^{\infty} |a_nx^n|,$ а это означает, что ряд $(17.1)$ сходится и притом абсолютно.

Замечание. Если степенной ряд $(17.1)$ сходится при $x = x_1,$ то нельзя гарантировать, что он сходится и при $x = -x_1.$ Например, ряд $\displaystyle\sum_{n=1}^{\infty} \frac {x^n}{n} $ сходится при $x = x_1 = -1$ и расходится при $x = -x_1 = 1.$

Следствие. Если степенной ряд $(17.1)$ расходится в некоторой точке $x_1,$ то для всех $x,$ таких, что $|x| \gt |x_1|$ ряд $(17.1)$ расходится.

Если бы в некоторой точке $x_2,$ такой, что $|x_2| \gt |x_1|,$ ряд $(17.1)$ оказался сходящимся, то, в силу первой теоремы Абеля, он должен был быть сходящимся в точке $x_1.$ Но в точке $x_1$ ряд $(17.1)$ расходится по условию, и следствие доказано.

Теорема. Множество точек сходимости степенного ряда $(17.1)$ представляет собой непустой промежуток с центром в точке $x_0 = 0.$ Это может быть одноточечное множество $\{ 0 \},$ интервал (быть может, и бесконечный), отрезок или полуинтервал.

Ясно, что в точке $x_0 = 0$ ряд $(17.1)$ с любыми коэффициентами $\{ a_n \}$ сходится. Если других точек сходимости у ряда $(17.1)$ нет, то множеством точек сходимости ряда $(17.1)$ является множество $\{ 0 \}.$ Предположим, что существуют отличные от нуля точки сходимости ряда $(17.1).$ Обозначим через $E$ множество всех таких точек, $R = \sup_{x \in E}|x|.$ Пусть $|x| \lt R.$ Тогда найдется такое $x_1 \in E,$ что $|x_1| \gt |x|.$ По первой теореме Абеля, ряд $(17.1)$ сходится абсолютно в точке $x.$ Если $R \lt +\infty$ и $|x| \gt R,$ то ясно, что $x \notin E$ и, следовательно, в этой точке ряд $(17.1)$ расходится. При $x = \pm R$ ряд $(17.1)$ может быть сходящимся или расходящимся.

Определение. Радиусом сходимости степенного ряда $$\sum_{n=0}^{\infty} a_n(x-x_0)^n \tag {17.2}$$ называется неотрицательное число $R$ (конечное или равное $+\infty$), обладающее тем свойством, что при $|x − x_0| \lt R$ ряд $(17.2)$ сходится, а при $|x − x_0| \gt R$ ряд $(17.2)$ расходится. Существование такого числа $R$ установлено в предыдущей теореме. Интервал $(x_0 − R, x_0 + R)$ называется интервалом сходимости степенного ряда $(17.2).$

Иллюстрация Изображение не найдено

Иллюстрация комплексного случая.

Изображение не найдено

Иллюстрация вещественного случая.

Из доказанной теоремы следует, что степенной ряд $(17.2)$ сходится в точке $x = x_0.$ Если множество точек сходимости ряда $(17.2)$ состоит более чем из одной точки $x_0,$ то ряд $(17.2)$ сходится в интервале $(x_0 − R, x_0 + R)$ и расходится вне отрезка $[x_0 − R, x_0 + R],$ причем во всех точках интервала $(x_0 − R, x_0 + R)$ ряд $(17.2)$ сходится абсолютно.

Пример 1. Ряд $$\sum_{n=0}^{\infty} n!x^n \tag {17.3}$$ сходится лишь в одной точке $x = 0.$ Действительно, если $x \ne 0,$ то, в силу известного равенства $\displaystyle\lim_{n \to \infty} n!x^n = \infty,$ ряд $(17.3)$ расходится, т. к. для него не выполнено необходимое условие сходимости. Итак, здесь $R = 0$ и множество точек сходимости состоит из единственной точки $\{ 0 \}.$

Пример 2. Ряд $$\sum_{n=0}^{\infty} x^n \tag {17.4}$$ сходится при $|x| \lt 1$ и расходится при $|x| \ge 1.$ Здесь $R = 1,$ интервал сходимости $(−1, 1),$ на концах интервала сходимости ряд $(17.4)$ расходится, так что множество точек сходимости ряда $(17.4)$ – интервал $(−1, 1).$

Пример 3. Ряд $$\sum_{n=1}^{\infty} \frac {x^n}{n} \tag {17.5}$$ сходится при $|x| \lt 1$ по признаку сравнения, т. к. $\left| \frac {x^n}{n} \right| \le |x^n|$ (сравниваем с геометрической прогрессией). Если $|x| \gt 1,$ то слагаемые ряда $(17.5)$ стремятся к $\infty$ и, следовательно, ряд $(17.5)$ расходится. Итак, радиус сходимости ряда $(17.5)$ $R = 1,$ интервал сходимости $(−1, 1).$ При $x = −1$ ряд $(17.5)$ принимает вид $\displaystyle\sum_{n=1}^{\infty} \frac {(-1)^n}{n}.$ Это – ряд лейбницевского типа и, следовательно, сходящийся. При $x = 1$ получаем ряд $\displaystyle\sum_{n=1}^{\infty} \frac {1}{n}$ – гармонический, а значит, расходящийся. Итак, на левом конце интервала сходимости ряд $(17.5)$ сходится (условно), а на правом конце – расходится. Множество точек сходимости ряда $(17.5)$ – полуинтервал $[−1, 1).$

Пример 4. Для ряда $$\sum_{n=1}^{\infty} \frac {x^n}{n^2} \tag {17.6}$$ при $|x| \le 1$ имеем $\left| \frac {x^n}{n^2} \right| \le \frac {1}{n^2},$ т. е. ряд $(17.6),$ в силу признака сравнения, сходится на множестве $[−1, 1].$ Если же $|x| \gt 1,$ то ряд $(17.6)$ расходится, т. к. не выполнено необходимое условие сходимости $(\frac {x^n}{n^2} \to \infty \space (n \to \infty)).$ Итак, радиус сходимости ряда $(17.6)$ $R = 1,$ интервал сходимости $(−1, 1),$ множество точек сходимости $[−1, 1].$

Пример 5. Ряд $$\sum_{n=1}^{\infty} \frac {x^n}{n!} \tag {17.7}$$ сходится при каждом $x \in \mathbb R.$ В самом деле, поскольку $$\frac {|x|^{n+1}}{(n+1)!} \cdot \frac {n!}{|x|^n} = \frac {|x|}{n+1} \to 0 \qquad (n \to \infty),$$ то, в силу признака Даламбера, получаем, что ряд $(17.7)$ сходится. Имеем $R = +\infty,$ интервал сходимости $(−\infty, +\infty).$

Примеры решения задач

  1. Определить радиус сходимости ряда $$\sum_{n=0}^{\infty}a_nz^n, \qquad \text{где} \qquad \begin{equation*} a_n =\begin{cases} \frac {1}{n}, \text { если $n = 1, 3, 5, …,$} \\ 0, \text { если $n = 0, 2, 4, …,$} \end{cases} \end{equation*}$$
    Решение

    Признак Даламбера неприменим для определения сходимости этого ряда, так как отношение $\displaystyle\frac {a_{n+1}}{a_n}$ не имеет смысла для четных номеров $n.$ Не дает ответа здесь и признак Коши, поскольку нетрудно проверить, что здесь предел$\displaystyle{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$ не существует. Однако, если положить $b_k = \frac{1}{2k+1},\space k = 0, 1, 2, …,$ и записать данный ряд в виде $$\sum_{k=0}^{\infty}b_kz^{2k+1} = \sum_{k=0}^{\infty} \frac {z^{2k+1}}{2k+1},$$ то, исследовав абсолютную сходимость этого ряда с помощью признака Даламбера, получим $$\lim_{k \to \infty} \frac {|b_{k+1}z^{2k+3}|}{|b_kz^{2k+1}|} = |z|^2 \lim_{k\to \infty} \frac {2k+1}{2k+3} = |z|^2.$$ Отсюда следует, что рассматриваемый ряд абсолютно сходится, когда $|z^2| \lt 1,$ т. е. когда $|z| \lt 1$ и абсолютно расходится, когда $|z| \gt 1.$ Таким образом, радиус сходимости этого степенного ряда равен $1.$

  2. Определить интервал сходимости ряда $$\sum_{n=1}^{\infty} \left( \frac {z}{n} \right) ^n$$
    Решение

    В силу признака Даламбера и признака сравнения получаем, что ряд сходится для любого $x \in \mathbb R$ $$\frac {|z|^{n+1}}{(n+1)^{n+1}} \cdot \frac {n^n}{|z|^n} = \frac {|z| \cdot n^n}{(n+1)^{n+1}} \le \frac {|z| \cdot n^n}{n^{n+1}} = \frac {|z|}{n} \to 0 \qquad (n \to \infty),$$ Таким образом, $R = +\infty,$ а искомый интервал сходимости $(-\infty;+\infty).$

  3. Определить радиус сходимости ряда $$\sum_{n=0}^{\infty} 2^nz^n $$
    Решение

    Сделаем замену $t = 2z^2.$ Отсюда получим, ряд $$\sum_{n=0}^{\infty} t^n \text { — сумма геометрической прогрессии.}$$ При $|t| \lt 1$ ряд сходится, при $|t| \ge 1$ расходится. Теперь подставим $2z^2$ вместо $t$ в неравенство $|t| \lt 1.$ Получим $$|2z^2| \lt 1,$$ откуда $$|z| \lt \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2} = R.$$

  4. Определить множество точек сходимости ряда $$\sum_{n=0}^{\infty} n^2z^n $$
    Решение

    В силу признака Коши получаем, что $$ \sqrt[n]{|n^2z|} = |z|\sqrt[n]{n^2}.$$ Выражение будет стремиться к нулю, при $n \to \infty,$ когда $|z| \lt 1.$ Отсюда радиус сходимости равен $1,$ а интервал сходимости $(-1; 1).$ При $z = 1$ имеем ряд вида $\displaystyle\sum_{n=0}^{\infty} n^2,$ который расходится, т. к. не выполняется необходимое условие сходимости. При $z = -1$ имеем ряд вида $\displaystyle\sum_{n=0}^{\infty} n^2(-1)^n.$ Исследуем по признаку Лейбница. $a_n = n^2$ монотонно возрастает при достаточно больших $n,$ а $\displaystyle{\lim_{n \to \infty}}a_n = \displaystyle{\lim_{n \to \infty}}n^2 = \infty.$ Следовательно, так как ни одно из условий признака Лейбница не выполняется, то ряд в точке $z = -1$ расходится. Следовательно, множество точек сходимости $(-1; 1).$

  5. Определить множество точек сходимости ряда $$\sum_{n=1}^{\infty} \frac{z^n}{n^3} $$
    Решение

    При $|z| \le 1$ имеем $\left| \frac{z^n}{n^3} \right| \le \left| \frac{1}{n^3} \right|,$ т. е. ряд сходится на $[-1;1].$ Если $|z| \gt 1,$ то ряд расходится т. к. не выполнено необходимое условие сходимости $\left( \displaystyle{ \lim_{n \to \infty}}\frac{z^n}{n^3} \to \infty \right ).$ Итак, радиус сходимости равен $1,$ а множество точек сходимости — интервал $[-1;1].$

Литература

  1. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 2. Радиус сходимости и круг сходимости степенного ряда / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 720 с. — c. 100-107.
  2. В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2010, ч.2, разделы 17 «Степенные ряды» и 17.1 «Структура множества точек сходимости степенного ряда».(стр. 53 — 56).
  3. Лысенко З.М. Конспект лекций по математическому анализу.

Структура множества точек сходимости степенного ряда

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.