Processing math: 100%

М1654. Задача о медиане и биссектрисе неравнобедренного треугольника

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Через основание L и M биссектрисы BL и медианы BM неравнобедренного треугольника ABC провели прямые параллельно, соответственно, сторонам BC и BA до пересечения с прямыми BM и BL в точка D и E. Докажите, что угол BED прямой.

Рис. 1

Первое решение

Обозначим O=LDME, и пусть точка O лежит внутри треугольника ABC (именно такое расположение было предложено рассмотреть на олимпиаде). ME — медиана треугольника MBC (Рис.1), а значит, и треугольника MDL, т.е. OL=OD. Далее DLB=LBC,MEL=ABL=LBC. Получили: MEL=DLB,OL=OE.

Итак, в треугольнике LED медиана EO равна половине стороны LD. Следовательно, угол DEL прямой, откуда сразу следует утверждение задачи.

Случай внешнего расположения точки O рассматривается аналогично. А можно и не рассматривать этот случай, а просто сослаться на такое почти очевидное предложение.

Рис. 2

Лемма. Пусть B и C — произвольные точки на выходящих из A лучах (Рис.2), BDCK,CEBF. Тогда и EDKF.

Следует из теоремы Фалеса; легко получить его с помощью векторов.

С помощью векторов нетрудно получить и естественное решение исходной задачи.

Второе решение

Рис. 3

Ниже мы будем рассматривать векторы в базисе {a,c}, где a=BC,c=BA, длины этих векторов обозначим через a и c соответственно.

Имеем: BL=c+ca+c(ac)=1a+c(ac+ca).

Обозначим BE=αBL, тогда αBL+EM=BM=12(a+c).

Приравняем проекции левой и правой частей этого равенства на вектор a:αca+c=12, откуда α=a+c2c.

Аналогично, положив BD=βBM, получим βBM+DL=BL; проектируя обе части этого равенства на c, находим β2=aa+c.

Получили BE=a2+a2cc,BD=aa+c(a+c). Таким образом, BEa=12(aa+cc) — это высота треугольника, построенного на единичных векторах aa и cc. Далее, BEa=1a+c(aaa+ccc) — (внутренняя) точка основания этого треугольника, отличная от основания высоты. Поэтому очевидно(Рис.3), что BDaBEaBE — и утверждение задачи доказано.

Разумеется, к этому решению можно было подойти более формально: вектор BDBE=a(ac)2(a+c)(aacc) параллелен основанию треугольника. А можно было и воспользоваться понятием скалярного произведения векторов: (BD,BE)=a22(1+(a,c)ac),

(BE,BE)=a22(1+(a,c)ac).

А. Акопян, В. Сендеров

М1654. Задача о медиане и биссектрисе неравнобедренного треугольника: 1 комментарий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *