Processing math: 100%

М1730. Выпуклый четырехугольник

Задача из журнала «Квант» (2000 год, 6 выпуск)

Условие задачи

Продолжения противоположных сторон произвольного выпуклого четырехугольника ABCD пересекаются в точках M и K  (рис.1). Через точку O пересечения его диагоналей проводится прямая, параллельная MK. Докажите, что отрезок этой прямой, заключенный внутри четырехугольника, делится точкой  O пополам.

Решение

Проведем  через точку D прямую l (сделайте чертеж самостоятельно), параллельную KM; пусть  E и F — точки пересечения l с прямыми BC и BA соответственно.  Пусть для определенности прямая, проходящая через O параллельно KM и l пересекает стороны AB и CD четырехугольника. В этом случае для решения задачи надо доказать, что точка O лежит на медиане KL треугольника DKF. Мы докажем, что O — точка пересечения медиан KL и MN треугольников DKF и DME соответственно. Обозначим точку пересечения медиан KL и MN через X.

Докажем вначале, что X лежит на BD, т. е. что прямые DX и BD совпадают. Для этого докажем, что они делят отрезок KM в одном и том же соотношении.

Пусть  Y — точка пересечения DX и KM. Имеем KYLD=XYDX (поскольку треугольники XYK и XDL подобны), MYDN =XYDX\[/latex].Поэтому[latex]KYMY =LDDN\[/latex].Аналогичнодоказывается,что[latex]BD делит KM в отношении FDDE\[/latex].Но[latex]FD=2LD, DE=2DN.

Осталось доказать, что X лежит на отрезке AC. Другими словами, что KL и MN делят отрезок AC в одном и том же отношении.

Лемма 1.
VSBV =ASAC\[/latex],где[latex]S — точка на стороне AC треугольника ABC, V — точка пересечения прямой BS с медианой AN этого треугольника.

Рассмотрим точку T отрезка BC такую, что ST || AN. Из теоремы Фалеса следует, что VSBV =NTBN =NTNC =ASAC .

Лемма 2.
VSUV=(ASAU)(ABAC), где U и S — точки на сторонах AB и AC треугольника ABC соответственно, а V — точка пересечения прямой US с медианой AN этого треугольника.

На стороне AC возьмем точку Z такую, что UZ || BC.  По лемме 1 имеем [latex]\frac{\displaystyle VS}{\displaystyle UV}\ = \frac{\displaystyle AS}{\displaystyle AZ}\[/latex], а по теореме Фалеса [latex]\frac{\displaystyle AC}{\displaystyle AB}\ = \frac{\displaystyle AZ}{\displaystyle AU}\[/latex]. Осталось перемножить эти равенства.

Доказанные утверждения позволяют завершить решение задачи. Именно, по лемме 2 медиана KL делит отрезок AC (считая от C)  в отношении m=(CKKD)(KFAK), а медиана MN — в отношении n=(MCME)(MDMA). Но MCME =KCKD\[/latex],[latex]KFAK =MDMA\[/latex].Следовательно,[latex]m=n.
Утверждение задачи доказано.

Замечание. Вот ещё одно, более естественное, хотя и несколько более сложное, доказательство леммы 2.

Проведем через V параллельные AS и AU прямые (рис.2).

Имеем: xy=ACAB (это характеристическое свойство точек медианы!). Теорема Фалеса дает: VSy=USAUxUV=ASUS. Перемножая эти два равенства, получаем
VSUV=(ASAU)(yx)=(ASAU)(ABAC).
Лемма доказана.

М. Волкевич, В. Сендеров

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *