Задача із журналу «Квант» (1998 рік. №6)
Умова
Бісектриси вписаного чотирикутника утворюють у перетині опуклий чотирикутник. Доведіть, що діагоналі отриманого чотирикутника перпендикулярні.
Розв’язок
Продовжимо протилежні сторони вихідного чотирикутника ABCD до перетину в точках P і Q (див. рисунок). Доведемо спочатку, що бісектриса PF кута P перпендикулярна бісектрисі QE кута Q.
Оскільки чотирикутник ABCD — вписаний, зовнішній кут DCQ дорівнює внутрішньому куту в протилежній вершині A. Так як пряма QE — бісектриса кута Q, то кути трикутника AQE відповідно дорівнюють кутам трикутника CQG. Отже, ∠CGQ=∠AEQ. Але кути CGQ і PGE рівні як вертикальні. Тому ∠PEG=∠PGE і △PEG — рівнобедрений.
Отже, бісектриса кута P є серединним перпендикуляром до відрізка EG, тобто бісектриса PF кута P перпендикулярна бісектрисі QE кута Q.
Звідси легко випливає твердження задачі, оскільки діагоналі чотирикутника, утвореного на бісектрисах чотирикутника ABCD, лежать на бісектрисах PF і QE.
У випадку, коли будь-які дві протилежні сторони чотирикутника ABCD паралельні, твердження задачі випливає із симетричності креслення.