Processing math: 100%

М1663. Взаємне розташування діагоналей опуклого чотирикутника

Задача із журналу «Квант» (1998 рік. №6)

Умова

Бісектриси вписаного чотирикутника утворюють у перетині опуклий чотирикутник. Доведіть, що діагоналі отриманого чотирикутника перпендикулярні.

С.Берлов

Розв’язок

Продовжимо протилежні сторони вихідного чотирикутника ABCD до перетину в точках P і Q (див. рисунок). Доведемо спочатку, що бісектриса PF кута P перпендикулярна бісектрисі QE кута Q.

Оскільки чотирикутник ABCD — вписаний, зовнішній кут DCQ дорівнює внутрішньому куту в протилежній вершині A. Так як пряма QE — бісектриса кута Q, то кути трикутника AQE відповідно дорівнюють кутам трикутника CQG. Отже, CGQ=AEQ. Але кути CGQ і PGE рівні як вертикальні. Тому PEG=PGE і PEG — рівнобедрений.

Отже, бісектриса кута P є серединним перпендикуляром до відрізка EG, тобто бісектриса PF кута P перпендикулярна бісектрисі QE кута Q.

Звідси легко випливає твердження задачі, оскільки діагоналі чотирикутника, утвореного на бісектрисах чотирикутника ABCD, лежать на бісектрисах PF і QE.

У випадку, коли будь-які дві протилежні сторони чотирикутника ABCD паралельні, твердження задачі випливає із симетричності креслення.

С.Берлов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *