Processing math: 100%

Теорема Ньютона-Лейбніца. Приклади застосування.

Формула Ньютона-Лейбница — это фундаментальная для всего анализа соотношение, так как эта формула выражает связь между определенными и неопределенными интегралами

Теорема Ньютона-Лейбница

 Если fC[a;b] и F — какая-нибудь первообразная для f, то справедлива формула baf(x)dx=F(b)F(a)=F(x)|ba

Доказательство

 Интегрирование по Риману существует в силу непрерывности f. В силу следствия F(x)=xaf(t)dt+c, для любого x[a;b]. Подставим x=a :

F(a)=aaf(t)dt+cc=F(a)F(x)=xaf(t)dt+F(a)

Подставим в это равенство x=bF(b)=baf(t)dt+F(a)

Примеры:

1) 52(1/x)dx=lnx|52=ln5ln2.

2) Для любой в [0;a](a>0) функция f(x)

 a0f(x)=a0f(ax)dx.

Действительно t=ax, имеем

a0f(x)dx=0af(at)dt=a0f(at)dt

Источники:

1) 2) Б.П.Демидович «Сборник Задач и упражнений по математическому анализу» издательство «НАУКА» Москва 1972 стр.188-189

2) Конспект по математическому анализу

Теорема Ньютона-Лейбніца. Приклади застосування.: 1 комментарий

  1. Вы что, просто скопировали текст из конспекта другого преподавателя и всё? Это категорически не приемлемо. По закону Украины об авторском праве Вы совершаете правонарушение.

    Остальные замечания можете уже не читать.


    Уберите #top из ссылки на эту страницу. Выходит скроллинг куда-то в середину. И без нее все будет хорошо.
    После знаков препинания обязательны пробелы. Ведь нет такого слова «Теорема.Якщо»?
    Что это за слово «онієї»? Вычитайте текст.
    В списке литературы обязательно указать минимум один рекомендованный учебник и страницы в нем. То что Вы указали, это ссылка на загрузку электронной версии книги, а не ссылка на книгу. Нужно переделать.
    При желании (если автор согласен), мы можем разместить электронную версию его книги у нас на сайте. но ссылки должны выглядеть по крайней мере так (только с конкретными страницами):
    1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. – М.: Наука., 1966 г., Т.*, стр.***-***
    2. Фихтенгольц Г.М. Основы математического анализа: В 2 т. – М.: ГИТТЛ., 1956 г., Т *, стр.***-***
    3. Шиманский Ш.Є.Математичний аналiз. – К.: Рад. шк., 1966 р., стр.***-***
    4. Кудрявцев Л.Д. Курс математического анализа: В 3 т. – М.: Высш. шк., 1988 г., T. *, стр.***-***
    5. Никольский С.М. Курс математического анализа: В 2 т. – М.: Наука., 1991 г., Т. *, стр.***-***
    6. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И., Сборник задач по математическому анализу: В 3 т. – М.: Наука., 1984 г., Т. *, стр.***-***
    7. Демидович Б.П., Сборник задач и упражнений по математическому анализу. – М.: Наука., 1977 г., стр.***-***

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *