Критерий компактности в n-мерном пространстве (Теорема Гейне – Бореля)

Теорема Гейне – Бореля. Чтобы множество KRn являлось компактным, необходимо и достаточно, чтобы K было ограниченным и замкнутым.

Доказательство. Достаточность. Пусть K замкнуто и ограничено. Тогда найдется сегмент IRn, содержащий K. В силу леммы Гейне – Бореля, этот сегмент I компактен. Поэтому, в силу свойств компактных множеств, компактно также его замкнутое подмножество K. Необходимость. Пусть K —  компакт. Докажем, что данное множество ограничено. Обозначим через Bs открытый шар с центром в точке 0 радиуса s. Тогда последовательность шаров{Bs}s=1 покрывает все пространство Rn, а следовательно, и множество K. Так как K компактно, следовательно, оно может быть покрыто конечным набором шаров Bs. Среди всех этих шаров выберем шар с наибольшим радиусом. Пусть это шар B. Тогда ясно, что KB, так что K ограничено. Покажем теперь, замкнутость множества K. Для этого достаточно показать, что любая точка yK, не будет предельной для K. Итак, пусть yK. Рассмотрим множества Gk=c¯B(y,1k)(k=1,2,). Так как замкнутый шар ¯B(y,1k) – множество замкнутое, следовательно его дополнение Gk открыто. Кроме того, ясно, чтоk=1Gk=Rn{y}. Поскольку yK, то совокупность множеств Gk(k=1,2,) образует открытое покрытие множества K. Пользуясь компактностью K, выберем из этого покрытия конечное подпокрытие {Gk1,,Gks} и положим ρ=1max{k1,,ks}>0. Отсюда следует, что шар B(y,ρ) не имеет общих точек с множеством K. Получаем, что точка y не будет предельной для K◻

Литература:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *