Решение задач на все виды произведений направленных отрезков. Простейшие задачи аналитической геометрии



Теоретический материал, который понадобится для решения задач по данной теме:

Определение 1

Скалярное произведение двух векторов, отличных от нуля $\, \bar{a}$ и $\bar{b}$, —  число, равное произведению длин этих  векторов на косинус угла между ними.

Обозначается: $ (\bar{a} , \bar{b}) = |\bar{a}| \cdot |\bar{b}| \cdot \cos{\widehat{(a,b)}} $

Пример 1: показать

Определение 2

Векторным произведением вектора $ \bar{a} $ на вектор $ \bar{b} $
называется такой вектор $ \bar{c} $, удовлетворяющий следующим условиям:

  • $ \bar{c} \perp \bar{a} $, $ \bar{c} \perp \bar{b} $
  • тройка $ < \bar{a} $ ,$ \bar{b} $, $ \bar{c} > $ — правая (некомпланарная тройка векторов называется правой, если векторы в ней можно представить, как располагаются большой, указательный и средний пальцы правой руки)
  • $ |\bar{c}| = |\bar{a}| \cdot |\bar{b}| \cdot \sin {\widehat{(a,b)}} $

Обозначается:$ \, \bar{c} = \left[\bar{a}, \bar{b} \right]$

Геометрический смысл векторного произведения заключается в том, что модуль векторного произведения$\quad$ $ |\bar{c}| = |\left[\bar{a}, \bar{b} \right]|$ $\quad$ равен площади параллелограмма, построенного на векторах $\bar{a}$ и $\ \bar{b}$.
рисунок-1

Пример 2: показать

Определение 3

Смешанным произведением векторов $ (\bar{a}, \bar{b}, \bar{c} ) $ называется скалярное произведение векторного произведения первых двух векторов на третий.

Обозначается: $(\bar{a}, \bar{b}, \bar{c} ) = $ $ ([\bar{a}, \bar{b}], \bar{c} )$

Формула, по которой вычисляется смешанное произведение правой тройки векторов:
$ \bar{a}=(a_{1},a_{2},a_{3}), \, \bar{b}=(b_{1},b_{2},b_{3}), \, \bar{c}=(c_{1},c_{2},c_{3}) \, $,
заданных в ортонормированном базисе $ \, \bar{i},\bar{j},\bar{k}$ :

$ (\bar{a}, \bar{b}, \bar{c} )=\begin{vmatrix}
a_{1}& a_{2}&a_{3} \\
b_{1} &b_{2} &b_{3} \\
c_{1}&c_{2} & c_{3}
\end{vmatrix} $ $\quad$ (1)

Геометрический смысл смешанного произведения заключается в том, что смешанное произведение векторов равно численному значению объема параллелепипеда, образованного на этих векторах, со знаком «-» если тройка $ \bar{a}, \bar{b}, \bar{c} $ левая и со знаком «+» если тройка правая.
рисунок-1

Пример 3: показать

Литература:

  1. Курс лекций по линейной алгебре. Г.С. Белозеров
  2. В.В. Воеводин Линейная алгебра. М.: Наука, 1994, стр. 108-111, 85-87
  3. О.Н.Цубербиллер Задачи и упражнений по аналитической геометрии. СПб.: Лань, 2003. стр.208-217

Решение задач на все виды произведений направленных отрезков.


Таблица лучших: Решение задач на все виды произведений направленных отрезков. Простейшие задачи аналитической геометрии

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *