Признак Коши

Признак Коши сходимости ряда в форме неравенств

Формулировка

Пусть дан ряд с неотрицательными слагаемыми:

[latex]\sum\limits_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+…+a_{n}+…[/latex]
[latex]a_{n}\geq 0[/latex]

Если начиная с какого-то номера [latex]n_{0}\epsilon \mathbb{N}[/latex] [latex]\forall n>n_{0}[/latex] выполняется неравенство [latex]\sqrt[n]{a_{n}}\leq q<1[/latex] [latex]q\epsilon \mathbb{R}[/latex], то ряд сходится.
Если же [latex]\exists n_{0}\epsilon \mathbb{N}:\forall n>n_{0}[/latex] [latex]\sqrt[n]{a_{n}}\geq 1[/latex], то ряд расходится.

Доказательство

Пусть [latex]\exists n_{0}\epsilon \mathbb{N}:\forall n>n_{0}\sqrt[n]{a_{n}}\leq q\Leftrightarrow a_{n}\leq q^{n}[/latex]. Так как [latex]0<q<1[/latex], то ряд [latex]\sum_{n=1}^{\infty} q^{n}[/latex] будет сходиться, а значит по признаку сравнения в форме неравенств ряд [latex]\sum_{n=1}^{\infty} a_{n}[/latex] так же является сходящимся.

Если [latex]\exists n_{0}\epsilon \mathbb{N}:\forall n>n_{0}\sqrt[n]{a_{n}}\geq 1\Leftrightarrow a_{n}\geq 1[/latex], что противоречит необходимому условию сходимости ряда ([latex]\lim_{n\rightarrow \infty }a_{n}=0[/latex]). Значит ряд [latex]\sum_{n=1}^{\infty} a_{n}[/latex] расходится.

Иногда на практике удобнее использовать следствие из данной теоремы.

Следствие (признак Коши сходимости ряда в предельной форме)

Формулировка

Пусть дан ряд с неотрицательными слагаемыми:

[latex]\sum\limits_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+…+a_{n}+…[/latex]
[latex]a_{n}\geq 0[/latex]

Если существует предел:

[latex]\lim\limits_{n\rightarrow \infty }{\sqrt[n]{a_{n}}}=K[/latex]

Тогда:

  1. Если [latex]K<1[/latex], то ряд сходится.
  2. Если [latex]K>1[/latex], то ряд расходится.
  3. Если [latex]K=1[/latex], то признак не дает возможности сказать что-либо о сходимости данного ряда.

Доказательство

Пусть [latex]\lim_{n\rightarrow \infty }{\sqrt[n]{a_{n}}}=K[/latex]. Из определения предела запишем: [latex]\forall \varepsilon >0 \exists N_{\varepsilon }:\forall n>N_{\varepsilon }\left |\sqrt[n]{a_{n}}-K \right |<\varepsilon \Leftrightarrow K-\varepsilon <\sqrt[n]{a_{n}}<K+\varepsilon[/latex]. Если [latex]K<1[/latex], то [latex]q=K+\varepsilon<1[/latex]  и тогда по признаку Коши в форме неравенств
ряд сходится.

Если же  [latex]K>1[/latex], то [latex]q=K-\varepsilon>1[/latex], а значит ряд расходится.

Пример

Дан ряд [latex]\sum_{n=1}^{\infty}(\frac{n+1}{n+2})^{n^{2}}[/latex]. Исследовать ряд на сходимость.

Воспользуемся  признаком Коши в предельной форме.

[latex]\lim\limits_{n\rightarrow\infty}{\sqrt[n]{a_{n}}}=\lim\limits_{n\rightarrow\infty}{(\frac{n+1}{n+2})^{n}}=\lim\limits_{n\rightarrow\infty}{\frac{1}{(\frac{n+2}{n+1})^{n}}}=\lim\limits_{n\rightarrow\infty}{\frac{1}{(1+\frac{1}{n+1})^{n*\frac{n+1}{n+1}}}}=\lim\limits_{n\rightarrow\infty}{\frac{1}{((1+\frac{1}{n+1})^{n+1})^{\frac{n}{n+1}}}}=\frac{1}{e^{1}}=\frac{1}{e}<1[/latex].

Значит исходный ряд сходится.

Тест

Предлагаем пройти тесты и закрепить пройденный материал

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *