М1762. Две тысячи делителей

Задача из журнала «Квант» (2001 год, 4 выпуск)

Условие

Существует ли натуральное число $n$ такое, что $n$ имеет ровно $2000$ различных простых делителей и $2^n+1$ делится на $n$?

Решение

Докажем по индукции, что для любого натурального $k$ существует натуральное $n_k$, имеющее $k$ различных простых делителей, делящееся на $3$ и такое, что $2^{n_k}+1$ делится на $n_k$.

Для $k=1$ можно взять $n=3$. Пусть число $n_k=n$, кратное $3$, имеет $k$ различных простых делителей, причём $2^n+1$ делится на $n$.

Число $2^{3n}+1=\left(2^n+1\right)\left(2^{2n}-2n+1\right)$ делится на $3n$. Это следует из того, что $2^n+1$ делится на $n$, а
$$2^{2n}-2^n+1=\left(2^n-2\right)\left(2^n+1\right)+3\;\;\;(*)$$ делится на $3$ (поскольку при нечётном $n$ числа $2^n+1$ и $2^n-2$ делятся на $3$).

Далее, число $2^{2n}-2^n+1$ не делится на $9$, поскольку на $9$ делится произведение $\left(2^n-2\right)\left(2^n+1\right)$. Значит, поскольку $2^{2n}-2^n+1>3$ при $n>1$, то это число имеет при $n>1$ простой делитель $p>3$. Так как НОД $\left(2^n+1, 2^{2n}-2^n+1\right)=3$ (это тоже ясно из равенства $(*)$), то $p$ — не делитель $n$.

Из сказанного следует, что число $3pn$ имеет $k+1$ простой делитель, причём $2^{3pn}+1$ делится на $3pn$. Последнее следует, например из равенства
$$\left(2^{3n}\right)^p+1=\left(2^{3n}+1\right)\left(\left(2^{3n}\right)^{p-1}-\left(2^{3n}\right)^{p-2}+\cdots+1\right)$$

Для завершения решения достаточно положить $n_{k+1}=3pn=3pn_k$.

А.Егоров, В.Сендеров

М1762. Две тысячи делителей: 1 комментарий

  1. [quote]Значит, поскольку 2^ (2*n) — 2^n +1 > 3 при n>1, то это число имеет при n>1 простой делитель p>3. [/quote]

    Вот откуда следует наличие такого делителя? не детализировано..

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *