Правило Лопиталя о раскрытии неоднозначностей

Метод нахождения пределов функций, раскрывающий неопределённости вида $latex \frac{0}{0} $ или $latex \frac{\infty}{\infty} $ Правило позволяет заменить предел отношения функций пределом отношения их производных.

1. Докажем теорему для случая, когда пределы функций равны нулю.

Условия:

  1. $latex f(x) &s=1$ и $latex g(x) &s=1$ дифференцируемы в проколотой окрестности точки $latex a $
  2. $latex \lim\limits_{x\to a}f(x)=\lim\limits_{x\to a}g(x)=0 &s=1$
  3.  $latex g'(x) \neq 0 &s=1$ в проколотой окрестности точки $latex a $
  4. Существует  $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} &s=1$

Вывод: Тогда существует  $latex \lim\limits_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim\limits_{x \rightarrow a} \frac{f'(x)}{g'(x)} &s=1$

Доказательство: Доопределим функции в точке $latex a $ нулём. Из 1 условия следует, что $latex f(x) $ и  $latex g(x) $ непрерывны на отрезке $latex [a,x] $, где $latex x $ принадлежит рассматриваемой окрестности точки $latex a $. Применим обобщённую формулу конечных приращений (Коши) к $latex f(x) $ и  $latex g(x) $ на отрезке $latex [a,x] $ $latex \exists \xi\in [a,x]:\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}&s=1 $ Так как $latex f(a)=g(a)=0 $  получим, что $latex \forall x $ $latex \exists \xi \in [a,x]:\frac{f(x)}{g(x)}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Пусть предел отношения производных равен $latex A $. Следовательно: $latex \lim\limits_{x \to a} \frac{f'(\xi(x))}{g'(\xi(x))}=\lim\limits_{y \to a} \frac{f'(y)}{g'(y)}=A &s=1$, так как $latex \lim\limits_{x \to a} \xi(x)=a &s=1$

2. Докажем теорему для случая, когда пределы функций равны бесконечности.

Условия:

  1. $latex f(x) $ и $latex g(x) $ дифференцируемы при $latex x>a $
  2. $latex \lim\limits_{x\to\infty}f(x)=\lim\limits_{x\to\infty}g(x)=\infty &s=1$
  3. $latex g'(x)\neq 0 $ при $latex x>a $
  4. Существует конечный $latex \lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)}=A &s=1$

Вывод: Тогда существует $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$ Доказательство: Из условия 2 следует, что $latex \exists a_{1}>a:\forall x>a_{1} \to |f(x)|>1,|g(x)|>1 $, и поэтому $latex f(x)\neq 0,g(x)\neq0 $ при $latex x>a_{1} $. По определению предела (условие 4) для заданного числа $latex \varepsilon >0 $ можно найти $latex \delta_{1}=\delta_{1}(\varepsilon)\geq a_{1} $ такое, что для всех $latex t>\delta_{1} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f'(t)}{g'(t)}<A+\frac{\varepsilon}{2} &s=1$ Фиксируя $latex x_{0}>\delta_{1} $ выберем, пользуясь условием 2 число $latex \delta_{2}>x_{0} $

Расположение всех выбираемых нами точек на прямой

такое, чтобы при всех $latex x>\delta_{2} $ выполнялись неравенства: $latex \left |\frac{f(x_{0})}{f(x)}<\frac{1}{2}\right | &s=1$  и  $latex \left |\frac{g(x_{0})}{g(x)}<\frac{1}{2}\right | &s=1$ Для доказательства теоремы нужно доказать, что существует такое $latex \delta $, что при всех $latex x>\delta $ выполняется неравенство: $latex A-\varepsilon<\frac{f(x)}{g(x)}<A+\varepsilon (*) &s=1$ Число $latex \delta $ будет выбрано ниже. Считая, что $latex x>\delta $, применим к функциям $latex f $ и $latex g $ на отрезке $latex [x;x_{0}] $  обобщённую формулу конечных приращений (Коши). $latex \exists \xi \in [x_{0};x]: \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Преобразуем левую часть неравенства: $latex \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f(x)}{g(x)}(\varphi(x))^{-1} &s=1$, где $latex \varphi(x)=\frac{1-\frac{g(x_{0})}{g(x)}}{1-\frac{f(x_{0})}{f(x)}}=1+\beta(x) &s=1$ Заметим, что $latex \beta(x)\to0 $ при $latex x\to+\infty $ в силу условия 2, поэтому $latex \forall \varepsilon>0 \exists \delta\geq\delta_{2}: $ $latex \forall x>\delta\to|\beta(x)|<\frac{\frac{\varepsilon}{2}}{|A|+ \frac{\varepsilon}{2}}(**) &s=1$ Так как  $latex \xi>x_{0}>\delta_{1} $, то для всех $latex x>\delta_{2} $  выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f(x)}{g(x)} (\varphi(x))^{-1}<A+\frac{\varepsilon}{2} &s=1$ Если $latex x>\delta $, то $latex \varphi(x)>0 $, и поэтому неравенство равносильно следующему: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))< $ $latex \frac{f(x)}{g(x)}<(A+\frac{\varepsilon}{2})(1+\beta(x)) &s=1$ Используя неравенство $latex (**) $, получаем: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))=$ $latex A-\frac{\varepsilon}{2}+(A-\frac{\varepsilon}{2})\beta(x) \geq $ $latex (A-\frac{\varepsilon}{2})-&s=1-(|A|+\frac{\varepsilon}{2})|\beta(x)|> $ $latex A-\frac{\varepsilon}{2}-\frac{\varepsilon}{2}=A-\varepsilon &s=1$ Аналогично находим: $latex (A+\frac{\varepsilon}{2})(1+\beta(x))\leq $ $latex A+\frac{\varepsilon}{2}+(|A|+\frac{\varepsilon}{2})|\beta(x)|< A+\varepsilon &s=1$

Таким образом для всех $latex x>\delta $ выполняется  неравенство $latex (*) $, а это означает, что справедливо утверждение: $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$

Примеры:

Пример 1. Найти $latex \lim\limits_{x \to 1}\frac{3x^{10}-2x^{5}-1}{x^{3}-4x^{2}+3} &s=1$ Обозначим $latex f(x)=3x^{10}-2x^{5}-1 $ , $latex g(x)=x^{3}-4x^{2}+3 $. Так как  $latex \lim\limits_{x\to1}f(x)=\lim\limits_{x\to1}g(x)=0 $, воспользуемся правилом Лопиталя для ситуации $latex \frac{0}{0} $. $latex f'(x)=30x^{9}-10x^{4} $, $latex f'(1)=20 $ $latex g'(x)=3x^{2}-8x $, $latex g'(1)=-5 $ По доказанной теореме: $latex \lim\limits_{x\to1}\frac{f(x)}{g(x)}=\lim\limits_{x\to1}\frac{f'(x)}{g(x’)}=\frac{20}{-5}=-4 &s=1$

Ответ: -4.

Пример 2. Доказать, что [latex] \lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=0,\alpha>0 [/latex]

Применяя правило Лопиталя для ситуации $latex \frac{\infty}{\infty} $, получим: [latex]\lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=[/latex][latex]\lim\limits_{x\to\infty}\frac{\frac{1}{x}}{\alpha x^{\alpha-1}}=[/latex][latex] \lim\limits_{x\to\infty}\frac{1}{\alpha x^{\alpha}}=0[/latex]

Доказано.

Источники:

  1. Конспект по курсу математического анализа Лысенко З.М.
  2. Тер-Крикоровв А.М., Шабунин М.И. Курс математического анализа -М.:ФИЗМАТ-ЛИТ, 2001.-672 с. гл. IV §19 с. 172-175

Тест на знание правила Лопиталя

Пройдите короткий тест для закрепления материала.

Правило Лопиталя о раскрытии неоднозначностей: 2 комментария

  1. В одном из вопросов Вы нашли хороший способ избежать проблем с отображением формул. Но дальше его не использовали. Почему?

Добавить комментарий для Igor Mazurok Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *