Пределы монотонных функций

Перед тем как рассматривать теорему, давайте вспомним, что такое монотонная функция и нарисуем  её график.

Функция [latex]f(x)[/latex] называется монотонно возрастающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in[a;b],x_{1}>[/latex] [latex]x_{2}\Rightarrow f(x_{1})\geq f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется монотонно убывающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in [a;b] ,x_{1}>[/latex] [latex] x_{2}\Rightarrow f(x_{1})\leq f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется строго монотонно убывающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in [a;b],x_{1}>[/latex][latex]x_{2}\Rightarrow f(x_{1})<f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется строго монотонно возрастающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1},x_{2}\in[a;b], x_{1}>[/latex][latex]x_{2}\Rightarrow f(x_{1})>f(x_{2})[/latex]

Пример графика монотонно возрастающей функции.

grafik1

 

На графике видно, что [latex]\forall x_{1}, x_{2} : x_{1}>x_{2}[/latex], соответствующие значения функции [latex]f(x_{1})\geq f(x_{2})[/latex]

Пример графика монотонно убывающей функции.

grafik2

На графике видно, что [latex]\forall x_{1},x_{2} : x_{1}>x_{2}[/latex], соответствующие значения функции [latex]f(x_{1})\leq f(x_{2})[/latex]

Теорема о существовании односторонних пределов у монотонных функций

Формулировка:

Если функция [latex]f(x)[/latex] определена и монотонна на отрезке [latex][a;b][/latex], то в каждой точке [latex]x_{0}\in (a;b)[/latex] эта функция имеет конечные пределы слева и справа, а в точках [latex]a[/latex] и [latex]b[/latex] правосторонний и левосторонний пределы.

Доказательство:

Пусть, например, функция [latex]f(x)[/latex] монотонно возрастает на [latex][a;b][/latex]. Выберем произвольную внутреннюю точку [latex]x_{0}\in (a;b][/latex]. Тогда [latex]\forall x\in [a;x_{0})\Rightarrow [/latex][latex]f(x)\leq f(x_{0})\Rightarrow[/latex] [latex]f(x)[/latex] ограничена сверху на [latex][a;x_{0})\Rightarrow[/latex][latex]\exists\sup f(x)=M\leqslant f(x_{0})[/latex].
Согласно определению:
а) [latex]\forall x\in [a;x_{0})\Rightarrow[/latex][latex] f(x) \leqslant M[/latex]
б) [latex]\forall \varepsilon > 0\exists x_{\varepsilon }:[/latex][latex]M-\varepsilon < f(x_{\varepsilon }),[/latex] обозначим [latex]\delta =x_{0}-x_{\varepsilon }>0[/latex].
Если [latex]x\in (x_{\varepsilon };x_{0})=(x_{0-\delta };x_{0})[/latex], то [latex]f(x_{\varepsilon })\leq f(x)[/latex].
Итог: [latex]\forall \varepsilon >0\exists \delta>0:[/latex][latex]\forall x\in (x_{0}-\delta;x_{0}):[/latex][latex]M-\varepsilon <[/latex] [latex]f(x_{\varepsilon }) < f(x)\leq M<[/latex] [latex] M+\varepsilon \Leftrightarrow[/latex][latex] |f(x)-M|< \varepsilon[/latex]
[latex]\lim_{x\rightarrow x_{0-0} } f(x) = M[/latex]
Итак [latex]f(x_{0}-0)= \sup f(x)[/latex], [latex]a\leqslant x<x_{0} [/latex].
Аналогично доказываем, что функция имеет в точке [latex]x_{0}\in [a;b)[/latex] предел справа причем [latex]f(x_{0}+0)=\inf f(x)[/latex], [latex]x_{0}<x\leqslant b[/latex].
Следствие. Если функция [latex]f[/latex] определена и монотонна на интервале [latex](a;b)[/latex], [latex]\forall\ x_{0}\in (a;b)\exists \[/latex] предел справа и слева, причем если [latex]f[/latex] возрастает, то
[latex]f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)[/latex] [latex] \leq\lim\limits_{x\to x_{0}+0} f(x)=[/latex][latex]f(x_{0}+0)[/latex],
если убывает, то
[latex]f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)[/latex] [latex] \geq\lim\limits_{x\to x_{0}+0} f(x)=[/latex][latex]f(x_{0}+0)[/latex].

Литература

Тест

Тест по теме Пределы монотонных функций.

Желаем удачи!

Таблица лучших: Предел монотонной функции

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Пределы монотонных функций: 1 комментарий

Добавить комментарий для неизвестно Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *