Processing math: 100%

М698. Задача о центрах прямоугольников

Условие

На сторонах a,b,c,d вписанного в окружность четырехугольника «наружу» построены прямоугольники размерами a×c,b×d,c×a,d×b. Докажите, что центры этих прямоугольников являются вершинами а)параллелограмма, б)прямоугольника.

Решение


а) Пусть M,P,N,Q — центры прямоугольников, построенных на сторонах AB,BC,CN,DA вписанного четырехугольника ABCD (см. рисунок).
Поскольку в четырехугольнике, вписанном в окружность, суммы противоположных углов равны 180\textdegree , а прямоугольники, построенные на противоположных сторонах, конгруэнтны, то MBP=NDQ и NCP=MAQ (мы рассматриваем углы, меньшие 180\textdegree). Таким образом, треугольник MBP подобен NDC и треугольник NCP подобен MAQ. Отсюда MP∣=∣NQ и NP∣=∣MQ, а это означает, что четырехугольник MPNQ — параллелограмм.
б) Можно считать, что сторона MQ параллелограмма видна из точки A изнутри параллелограмма, сторона PN видна из точки C снаружи и, аналогично, сторона MP видна из точки B изнутри, а сторона NQ из точки D видна снаружи. Тогда расположение всех отрезков и треугольников будет таким, как показано на рисунке. Докажем, что, MPN+NQM=180\textdegree (отсюда будет следовать, что MPN=NQM=90\textdegree). Эта сумма, очевидно, равна BPC+DQA=180\textdegree, поскольку BPM=DQN, а CPN=AQM.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *