Условие
Докажите, что из одинаковых плиток, имеющих форму равнобедренных трапеций с основаниями 3 см, 1 см и высотой 1 см, нельзя составить прямоугольник.
Решение
Предположим, что прямоугольник удалось составить из n трапеций. Отметим точки, в которые попадают вершины трапеций, в том числе — четыре вершины прямоугольника. У каждой трапеции два острых угла (по 45∘) и два тупых (по 135∘), так что у всех n трапеций вместе одинаковое число острых и тупых углов — по 2n .
рис. 3
рис. 4
рис. 5
С другой стороны, ясно, что в каждой из отмеченных точек расположена не меньше острых углов, чем тупых (если там есть один тупой угол, то есть по крайней мере один острый, а если — два тупых, то и два острых); при этом в вершинах прямоугольника могут оказаться острые углы трапеции. Таким образом, острых углов больше, чем тупых (по крайней мере, на 8).
Полученное противоречие доказывает невозможность составления прямоугольника из трапеций.
С. Рукшин