Критерии первообразности

Критерии первообразности

[latex] U_n[/latex] — циклическая группа корней [latex] n[/latex]-й степени из единицы. Образующий элемент группы [latex] U_n[/latex] называется первообразным корнем [latex] n[/latex]-й степени из единицы.

Теорема 1 (Первый критерий первообразности)

Корень [latex] n[/latex]-й степени из единицы будет первообразным корнем [latex] n[/latex]-й степени из единицы [latex] \Leftrightarrow[/latex] не является корнем из единицы никакой степени [latex] <n[/latex].

Доказательство

Необходимость:
[latex] E[/latex] – первообразный корень степени [latex] n[/latex] из единицы .
[latex] \forall m \in \mathbb{N}[/latex], [latex] m < n[/latex], [latex] E^m \ne 1[/latex];
[latex] U_n=[/latex] [latex]\{1, E, E^2, …, E^{n-1}\}[/latex].
От противного. Пусть [latex] E^m= 1[/latex], [latex] m < n[/latex], тогда [latex] E[/latex] образует группу [latex] {U}'_n[/latex] (или [latex] U_m[/latex]) = [latex]\{1, E, E^2, …, E^{m-1}, E^m\}[/latex] = [latex]\{1, E, E^2, …, E^{m-1}\}[/latex], где [latex] E^m= 1[/latex] и [latex] {U}'_n= m[/latex], но [latex] m < n \Rightarrow [/latex] [latex] {U}'_n \ne U_n \Rightarrow [/latex] [latex] E[/latex]- не образующий элемент [latex] U_n[/latex]. Получаем, что [latex] \forall m \in \mathbb{N}[/latex], [latex] m < n[/latex], [latex] E^m \ne 1[/latex].
Достаточность:
[latex] \forall m \in \mathbb{N}[/latex], [latex] m < n[/latex], [latex] E^m \ne 1 \Rightarrow [/latex]
[latex] E[/latex] — первообразный корень из единицы степени [latex]n[/latex].
От противного. Пусть [latex] E[/latex]-не является первообразным корнем [latex] n[/latex]-й степени из единицы [latex] \Rightarrow E [/latex] не образует группу [latex] U_n \Rightarrow [/latex]
[latex] U^E_n= {E^0, E^1, E^2,…< E^{n-1} } \ne U_n \Rightarrow U^E_n \in U_n \Rightarrow \exists k, 1 \leqslant k \leqslant n-1,[/latex] что [latex] E^{k-1}=1[/latex], но [latex] 0 \leqslant k+1 < n-1 [/latex], [latex] m= k-1 \Rightarrow[/latex] [latex] \exists m \in \mathbb{N}[/latex], [latex] m < n[/latex], [latex] E^m = 1 \Rightarrow [/latex] [latex] E[/latex] – первообразный корень степени [latex] n[/latex] из [latex] 1[/latex].

Лемма

Если [latex] E[/latex] — первообразный корень степени [latex] n[/latex] из единицы, то
[latex] E^m= 1 \Leftrightarrow m \vdots n[/latex].

Доказательство

Необходимость:
Найдём [latex] m= nq+r[/latex], [latex] 0 \leq r \leq n-1[/latex];
[latex] 1= E^m= E^{nq+n}= E^{nr}E^r= (E^n)^qE^r= 1^qE^r= E^r[/latex].
Если [latex] r \in \mathbb{N}[/latex], то получим противоречие с первым критерием [latex] r=0 \Rightarrow m \vdots n[/latex].
Достаточность: [latex] m \vdots n \Rightarrow m=nq[/latex];
[latex] E^m= E^{nq}= (E^n)^q= 1^q=1[/latex].

Теорема 2 (Второй критерий первообразности)

Пусть [latex] E [/latex] — первообразный корень степени [latex] n[/latex] из единицы, тогда [latex] E^k (k \in \mathbb{N})[/latex] является первообразным корнем степени [latex] n[/latex] из единицы [latex] \Leftrightarrow (n,k)=1[/latex].

Доказательство

[latex](n,k)= d[/latex]; [latex] n= n,d[/latex]; [latex] k= k,d[/latex]; [latex](n_1, k_1)=1[/latex].
Необходимость: [latex] E[/latex], [latex] E^n[/latex] — корни степени [latex] n[/latex] из единицы.
[latex] (n,k)=1 [/latex]
От противного. [latex] (n,k)=d > 1 \Rightarrow n_1 < n [/latex];
[latex](E^k)^{n_1} = (E^{k_1d})^{n_1}= E^{k_1dn_1}= E^{k_1(nd_1)}= E^{k_1n}= (E^n)^{k_1}= 1^{k_1}=1 \Rightarrow d=1[/latex] противоречие.
Достаточность: [latex] E [/latex] — первообразный корень степени [latex] n [/latex] из единицы;
[latex] (n,k)=1 [/latex];
[latex] E^k [/latex] — первообразный корень степени [latex] n[/latex] из единицы.
От противного. Пусть [latex] E^k [/latex] – не является первообразным корнем степени [latex] n[/latex] из единицы, тогда по первому критерию первообразности: [latex] \exists m \in N[/latex], [latex] m < n[/latex], [latex](E^k)^m= 1[/latex];
[latex] E^{km}=1 \Rightarrow [/latex] по лемме [latex] km \vdots n \Rightarrow m \vdots n [/latex], но [latex] m < n [/latex] – противоречие.

ПРИМЕРЫ

Найти все первообразные корни группы [latex]U_{12}[/latex], пользуясь вторым критерием первообразности.

Спойлер

Определяем с какими индексами будут корни и потом по формуле [latex](E_k= \cos\frac{2\pi k}{n} + i \sin \frac{2\pi k}{n})[/latex] находим эти самые первообразные корни.
[latex]U_{12}[/latex], [latex] (k, 12) = 1[/latex], [latex] k= 1, 5, 7, 11[/latex];
[latex]E_1, E_5, E_7, E_{11}[/latex]
[latex] E_1= \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}[/latex];
[latex] E_5= \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}[/latex];
[latex] E_7= \cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}[/latex];
[latex] E_{11}= \cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}[/latex];

[свернуть]

Даны корни из единицы [latex]E_1 = i[/latex], [latex] E_3 = -i[/latex]. Построить группу [latex] U_4[/latex].

Спойлер

Так как группа [latex] U_4[/latex] циклическая, то у нее есть образующий элемент x, этот элемент в свою очередь будет первообразным корнем и тогда, так как известные нам корни имеют индексы взаимно простые с [latex] 1[/latex] (по второму критерию) получим, что они и есть первообразными корнями. Теперь один из них возводим в степени [latex] 0, 1, 2, 3[/latex] получим [latex] 4[/latex] числа, они и будут составлять искомую группу:
[latex] U_4=[/latex] [latex]\{1, i, -1, -i\}[/latex].

[свернуть]

Тест по вышеизложенному материалу

Источники

  1. Белозеров Г.С. Конспект лекций.
  2. Курош А.Г. Курс линейной алгебры. Издание тринадцатое, 2004. Стр.123-128.
  3. Фаддеев Д.К. Лекции по алгебре. Наука, 1984. Стр.43-49.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *