M1273. Площади фигуры, составленной из треугольников

Задача из журнала «Квант» (1991 год, выпуск 8)

На сторонах $AB$, $BC$ и $CA$ треугольника $ABC$ как на основаниях вне его построены треугольники $ABC_{1}$, $BCA_{1}$, $CAB_{1}$, у каждого из которых отношение высоты к основанию равно $k$. Такие же треугольники $ABC_{2}$, $BCA_{2}$ и $CAB_{2}$ построены и по другую (внутреннюю) сторону от оснований. Докажите, что площади $S$, $S_{1}$ и $S_{2}$ треугольников $ABC$, $A_{1}B_{1}C_{1}$ и $A_{2}B_{2}C_{2}$ связаны соотношением $$S_{1} \pm S_{2} = S \cdot \left(\frac12 + 6k^2\right) $$ (знак «$+$» или «$-$» зависит от ориентации треугольника $A_{2}B_{2}C_{2}$ по отношению к $ABC$).

Доказательство

Вершины треугольников с площадями $S_{1}$ и $S_{2}$ лежат на серединных перпендикулярах к сторонам треугольника $ABC$, проходящих через центр $O$ его описанной окружности. Если обозначить через $R$ радиус этой окружности, а через $\alpha$, $\beta$, $\gamma$ — углы треугольника $ABC$, то из рис.1 видно, что, поскольку синусы углов между перпендикулярами равны синусам углов между соответствующими сторонами, то $$ 2S_{1} = OA_{1} \cdot OB_{1} \cdot \sin \gamma + OB_{1} \cdot OC_{1} \cdot \sin \alpha + OC_{1} \cdot OA_{1} \cdot \sin \beta . $$

рис.1

Пусть $t$ — тангенс угла наклона стороны равнобедренного треугольника к основанию $(t = 2 \cdot k)$. Тогда отрезки от $O$ до вершин легко выразить через радиус $R$ и получить, что $$\begin{multline} \frac{2S_1}{R^2} = \left(\cos \alpha + t \sin \alpha \right) \cdot \left( \cos \beta + t \sin \beta \right) \cdot \sin \gamma + {} \\\\ {} + \left( \cos \beta+ t \sin \beta \right) \cdot \left( \cos \gamma+ t \sin \gamma \right) \cdot \sin \alpha + {} \\\\ {} + \left(\cos \gamma+ t \sin \gamma \right) \cdot \left( \cos \alpha+ t \sin \alpha \right) \cdot \sin \beta.\end{multline}$$
Отношение же $\frac{ 2S_{2} }{R^2}$ (для случая, изображенного на рис.1) равно аналогичному выражению, где вместо $t$ стоит $-t$. Сложив оба эти выражения и раскрыв скобки, мы увидим, что коэффициент при $t^1$ равен $0$, коэффициент при $t^2$ равен $6 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma$, а свободный член (здесь нужно использовать равенство $\alpha + \beta + \gamma = \pi$, откуда $ \cot \alpha \cdot \cot \beta + \cot \beta \cdot \cot \gamma + \cot \alpha \cdot \cot \gamma = 1$) равен $2 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma$. По известной формуле $S = \frac{abc}{4R}$, выражающей площадь $S$ через стороны $a$, $b$, $c$ и радиус описанной окружности $R$, $$2 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma = 2\frac{abc}{8R^3} = \frac{S}{R^2}$$
Откуда получаем нужную формулу $$\begin{equation} S_{1} + S_{2} = \frac{1+3t^2}{2} S = S \cdot \left(\frac12 + 6k^2\right) \end{equation} $$.
Эти рассуждения необходимо несколько уточнить, чтобы они оказались применимы не только для случая, изображенного на рис.1, но и для случая, когда внутренние треугольники налегают друг на друга, в частности, когда $A_{2}B_{2}C_{2}$ имеет противоположную ориентацию. Вместо этого мы посмотрим на наши рассуждения с более общей точки зрения.
Верен такой общий факт: если три точки $K$, $L$ и $M$ с постоянными скоростями движутся по трем прямым, то площадь ориентированного треугольника $KLM$ как функция,зависящая от времени $t$, выражается квадратным трехчленом от $t:S = F\left(t\right)$. Легко доказать это, например, с помощью метода координат (формула ориентированной площади треугольника с вершинами $\left(x_1, y_1\right)$, $\left(x_2, y_2\right)$, $\left(x_3, y_3\right)$ выглядит так: $$ S = \frac{x_1 y_2 — x_2 y_1 + x_2 y_3 — x_1 y_2 + x_3 y_1 — x_1 y_3}{2}.$$ Ясно, что если каждая координата выражается линейной функцией от $t$, то $S$ — квадратный трёхчлен от $t$).
Будем считать, что при $t=0$ наши точки совпадают с серединами сторон треугольника $ABC$ и двигаются по серединным перпендикулярам (при $t>0$ во внешнюю сторону) со скоростями, пропорциональными длинам $a$, $b$, $c$ соответствующих сторон треугольника: при некотором $t$ они занимают положения $A_{1}$, $B_{1}$, $C_{1}$, а при противоположном значении $\left(-t\right)$ — положения $A_{2}$, $B_{2}$, $C_{2}$. Нас интересует сумма $F\left(t\right)+F\left(-t\right)$, то есть свободный и старший (содержащий $t^2$) члены $F\left(t\right)$, которые по сущетсув мы и вычисляли выше (1).
Интересно заметить, однако, что они имеют геометрический смысл, так что можно найти их без вычислений. Свободный член $F\left(0\right)$ — это $\frac{S}{4}$ (площадь треугольника из средних линий $ABC$). Чтобы найти старший коэффициент, — он определяется как отношение площади $S_{1}$ к $t^2$ в пределе при $t$ стремящемся к бесконечности, — заметим, что при очень большом $t$ треугольник $ABC$ можно считать «почти точкой» $O$. При этом векторы $OA_{1}$, $OB_{1}$, $OC_{1}$ перпендикулярны соответствующим сторонам треугольника и им пропорциональны ( с коэффициентом $k=\frac{t}{2}$ ). Сумма этих векторов $OA_{1}$, $OB_{1}$ и $OC_{1}$ равна нулю (как и векторов, образующих стороны треугольника), то есть они служат отрезками медиан треугольника $A_{1}B_{1}C_{1}$, причем последний по площади в 3 раза больше треугольника $A_{1}OD$ (рис.2), подобного $ABC$ с коэффициентом $k$. Отсюда ясно, что старший член $F\left(t\right)$ имеет вид $3 k^2 \cdot S = 3 \frac{t^2 \cdot S}{4}$.
рис.2

Итак, $F\left(t\right) = \frac {S \left(1+ \ldots +3 t^2\right)}{4}$, откуда следует нужная формула (2) для $S_1 \pm S_2 = F\left(t\right)+F\left(-t\right)$.
Отметим интересные частные случаи нашей формулы: если на сторонах строятся правильные треугольники, то $t = \sqrt{3}$, так что $S_1 \pm S_2 = 5S$; если равнобедренные прямогульные, то $-t = 1$ и $S_1 \pm S_2 = 2S$; а если $t = \frac{\sqrt{3}}{6}$ (при этом новые точки — центры правильных треугольников, построенных на сторонах), то $S_1 \pm S_2 = S$.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *