M1699. Неравенство

Задача из журнала «Квант» (1999 год, 5 выпуск)

Условие

Докажите, что при любом натуральном $n$ справедливо неравенство $$\left \{ \sqrt{1} \right \} + \left \{ \sqrt{2} \right \} +\dots+ \left \{ \sqrt{n} \right \} \leqslant \frac{n^2-1}{2}$$
(Здесь $\left \{ k \right \}$ — дробная часть числа $k$.)

Решение

При $n = 1$ неравенство обращается в равенство $0 = 0$. При $n > 1$ докажем, что сумма дробных частей на каждом промежутке между двумя последовательными квадратами удовлетворяет неравенству $$\sum_{k=m^2}^{m^2+2m} \left \{ \sqrt{k} \right \} \leqslant \frac{2m+1}{2}.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)$$

Нетрудно проверить (например, с помощью очевидного неравенства $\displaystyle \sqrt{m^2+x} \leqslant m + \frac{x}{2m}$), что
$$\sqrt{m^2+a} + \sqrt{m^2 + m -a} \leqslant 2m+1$$
при $0 \leqslant a \leqslant m$.

Следовательно, $$\left \{ \sqrt{m^2+a} \right \} + \left \{ \sqrt{m^2 + 2m -a} \right \} \leqslant 1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)$$

Просуммировав эти неравенства при $a =0,1,\dots,m-1$ и неравенство $\displaystyle \left \{ m^2+m \right \} \leqslant \frac{1}{2}$ (получаемое деление на $2$ обеих частей $(2)$ при $a = m$), приходим к неравенству $(1)$. Суммируя неравенство $(1)$ по всем $m$ от $1$ до $n-1$, получаем $$\sum_{k=1}^{n^2-1} \left \{ \sqrt{k} \right \} \leqslant \frac{n^2-1}{2}.$$

Остается заметить, что $\left \{ \sqrt{n^2} \right \} = 0.$

А. Храбров

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *