Processing math: 100%

Примеры приближенного вычисления определенных интегралов по формуле Тейлора

Интегралы от некоторых функций не могут быть выражены через элементарные функции. Для нахождения таких интегралов применяются различные приближённые методы интегрирования, смысл которых состоит в том, чтобы заменить подынтегральную функцию на «близкую» к ней функцию, проинтегрировав которую, мы получим элементарную функцию.

В частности, мы рассмотрим один из таких методов — разложение подынтегральной функции в ряд Тейлора.

Принцип этого метода состоит в том, чтобы заменить подынтегральную функцию по формуле Тейлора и почленно проинтегрировать полученную сумму.

Проиллюстрируем данный метод на примере (вычислим с точностью до 0,001):

1) [latex]\int\limits_{0}^{0.3} e^{-2x^{2}}dx[/latex]

Спойлер

Рассмотрим ещё пример (вычислим с точностью до 0,0001):

2) [latex]\int\limits_{0}^{0.5} \frac{1-\cos(x)}{x^{2}}dx[/latex]

Спойлер

Литература :

Приближённое интегрирование

Данный тест поможет Вам усвоить материал этой записи.

Таблица лучших: Приближённое интегрирование

максимум из 13 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *