М418. Выполняются ли неравенства?

Задача из журнала «Квант» (1977 год, 8 выпуск)

Условие

Докажите, что для любого натурального $n\geqslant2$ выполняются неравенства: $$n\left(\sqrt[n]{n+1}-1\right)<1+\frac12+\frac13+…+\frac1n<n\left(1-\frac1{\sqrt[n]n}\right)+1.$$

Решение

Для доказательства мы воспользуемся теоремой Коши о среднем арифметическом и среднем геометрическом. Пусть $a_1,a_2,…,a_n\;-$ положительные числа. Тогда $$\frac{a_1+a_2+…+a_n}n\geqslant\sqrt[n]{a_1a_2…a_n},$$ причем равенство достигается лишь в случае, когда все числа равны.

Запишем теорему Коши для чисел $1,\;\frac12,\;\frac23,\;\frac34,\;…,\;\frac{n-1}n:$ $$\frac{1+{\displaystyle\frac12}+{\displaystyle\frac23}+…+{\displaystyle\frac{n-1}n}}n>\sqrt[n]{\frac1n}.$$

Перепишем это неравенство так: $$1-\left(1-\frac12\right)+\left(1-\frac13\right)+…+(1-\frac1n)>\frac n{\sqrt[n]n}.$$ Отсюда получим одно из нужных нам неравенств: $$1+\frac12+\frac13+…+\frac1n<n\left(1-\frac1{\sqrt[n]n}\right)+1.$$

Чтобы доказать второе неравенство, запишем теорему Коши для чисел $2,\;\frac32,\;\frac43,\;…,\;\frac{n+1}n$: $$\frac{2+{\displaystyle\frac32}+{\displaystyle\frac43}+…+{\displaystyle\frac{n+1}n}}n<\sqrt[n]{n+1},$$ или $$2+(1+\frac12)+(1+\frac13)+…+(1+\frac1n)>n\sqrt[n]{n+1},$$ откуда $$n+(1+\frac12+\frac13+…+\frac1n)>n\sqrt[n]{n+1},$$ то есть $$1+\frac12+\frac13+…+\frac1n>n(\sqrt[n]{n+1}-1).$$

Л. Курляндчик

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *