Дифференциал в пространстве $\mathbb R^n$

Если у Вас возникли трудности с понятием дифференциала в одномерном случае, то ознакомьтесь с этой статьей.

Дифференциалы высших порядков

Полный дифференциал [latex]dU[/latex] функции от многих переменных — это функция тех же переменных, и можно определить полный дифференциал этой функции. Таким образом, получим дифференциал второго порядка [latex]d^2U[/latex] изначальной функции [latex]U[/latex], который также будет функцией тех же переменных, а его полный дифференциал приведет к дифференциалу третьего порядка [latex]d^3U[/latex] изначальной функции и т.д.

Теперь рассмотрим функцию [latex]U=f(x,y)[/latex] двух переменных [latex]x[/latex] и [latex]y[/latex] и предположим, что переменные [latex]x[/latex] и [latex]y[/latex]  независимые переменные. По определению

[latex]dU=\frac{\partial f(x,y)}{\partial x}\partial x+\frac{\partial f(x,y)}{\partial y}\partial y[/latex].

При вычислении [latex]d^2U[/latex] обратим внимание, что дифференциалы [latex]dx[/latex] и [latex]dy[/latex] независимых переменных следует рассматривать только как постоянные величины, значит их можно выносить за знак дифференциала

[latex]d^2U=\partial[\frac{\partial f(x,y)}{\partial x}\partial x]+\partial [\frac{\partial f(x,y)}{\partial y}\partial y]=\partial x\partial \frac{\partial f(x,y)}{\partial x}+\partial y\partial \frac{\partial f(x,y)}{\partial y}=\partial x[\frac{\partial ^2f(x,y)}{\partial x^2}\partial x + [/latex]  [latex]+ \frac{\partial ^2f(x,y)}{\partial x \partial y}\partial y]+\partial y[\frac{\partial ^2f(x,y)}{\partial y \partial x}\partial x+\frac{\partial ^2f(x,y)}{\partial y^2}]=\frac{\partial ^2f(x,y)}{\partial x^2}\partial x^2+2\frac{\partial ^2f(x,y)}{\partial y \partial x}\partial x \partial y+\frac{\partial ^2f(x,y)}{\partial y^2}\partial y^2.[/latex]

Вычисляя аналогичным образом [latex]d^3U[/latex], получим

[latex]d^3U=\frac{\partial ^3f(x,y)}{\partial x^3}\partial x^3+3\frac{\partial ^3f(x,y)}{\partial x^2 dy}\partial x^2 \partial y+3\frac{\partial ^3f(x,y)}{\partial x \partial y^2}\partial x \partial y^2+\frac{\partial ^3f(x,y)}{\partial y^3}\partial y^3[/latex].

Эти выражения [latex]d^2U[/latex] и [latex]d^3U[/latex] приводят к следующей символической формуле для дифференциала любого порядка:

[latex]d^nU=(\frac{\partial }{\partial x}\partial x+\frac{\partial }{\partial y}\partial y)[/latex],

причем формулу следует понимать так: сумму, стоящую в круглых скобках, нужно возвести в степень [latex]n[/latex], применяя бином Ньютона, после чего показатели степеней [latex]y \frac{\partial }{\partial x}[/latex] и [latex]\frac{\partial }{\partial y}[/latex] будем считать указателями порядка производных по [latex]x[/latex] и [latex]y[/latex] от функции [latex]f[/latex].

Геометрический смысл дифференциала функций двух переменных
Пусть функция [latex]z=f(x,y)[/latex] имеет в точке [latex]P_{0}(x_{0},y_{0})[/latex] дифференциал

[latex]dz=f_{x}^{\prime}(x_{0},y_{0})\Delta x+f_{y}^{\prime}(x_{0},y_{o})\Delta y,[/latex](*)

или

[latex]dz=f_{x}^{\prime}(x_{0},y_{0})(x-x_{0})+f_{y}^{\prime}(x_{0},y_{0})(y-y_{0})[/latex]. (**)

Рассмотрим уравнение касательной плоскости

[latex]Z-z_{0}=f_{x}^{\prime}(x_{0},y_{0})(x-x_{0})+f_{y}^{\prime}(x_{0},y_{0})(y-y_{0})[/latex].

Видим, что правая часть этого уравнения совпадает с правой частью уравнения (*) для дифференциала [latex]dx[/latex].
1234
Левые части этих равенств равны, но в равенстве (*) левая часть и есть дифференциал функции [latex]z=f(x,y)[/latex] в точке [latex]P_{0}(x_{0},y_{0})[/latex], а в уравнении (**) левая часть означает соответствующее приращение аппликаты касательной плоскости.

Вывод: геометрический смысл дифференциала функции двух переменных равен соответствующему приращению аппликаты касательной плоскости.
Правила дифференцировaния
[latex]d(U+V)=dU+dV[/latex]
[latex]d(UV)=UdV+VdU[/latex]
[latex]d\frac{U}{V}=\frac{VdU-UdV}{V^2},[/latex][latex] \ \ V\neq[/latex][latex]0[/latex]

Литература

Тест на тему: Дифференциал

Предлагаем пройти тесты и закрепить пройденный материал


Таблица лучших: Тест на тему: Дифференциал

максимум из 12 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Дифференциал в пространстве $\mathbb R^n$: 1 комментарий

  1. — Укажите страницы в списке литературы.
    — Не нужно разделять литературу на рекомендованную и использованную. Просто «Литература».
    — Большая часть тестов относится к функциям одной переменной. Это здесь неуместно. Исправьте.
    — Синус и косинус кодируется так — \sin \cos
    — Сделайте ссылки на другие разделы сайта.
    — Уточните в названии, что речь идет о Rn.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *