Критерий сходимости несобственных интегралов

Теорема

Пусть f(x) не изменяет знак на полуинтервале \left[ a ,b \right) и для любого \xi из данного полуинтервала f(x) интегрируема по Риману на отрезке\left[ a ,\xi \right]. Тогда для сходимости несобственного интеграла \int _{a}^{b}{f(x)dx} необходимо и достаточно, чтобы функция \Phi (\xi )=\int _{ a }^{ \xi }{ f(x)dx } была ограничена на \left[ a ,b \right).

Спойлер

firsttopic

\Phi(t) — площадь заштрихованной фигуры.

[свернуть]

Доказательство

Докажем вначале теорему для f(x) неотрицательной. Покажем, что функция \Phi (\xi ) возрастает. Действительно, для любых {\xi}_{1}, {\xi}_{2} из \left[ a ,b \right), {\xi}_{1}<{\xi}_{2}
$$ \Phi({ \xi }_{ 1 })-\Phi({ \xi }_{ 2 })=\overset { { \xi }_{ 1 } }{ \underset { a }{\int} } f(x)dx-\overset{ { \xi }_{ 2 } }{ \underset { a }{\int} } f(x)dx=\overset { { \xi }_{ 2 } }{ \underset { { \xi }_{ 1 } }{ \int } } f(x)dx \ge 0 ,$$ так как f(x) неотрицательна.

Из определения сходимости несобственного интеграла, интеграл \int _{ a }^{ b }{ f(x)dx } сходится тогда, когда существует конечный предел $$ \underset { \xi \rightarrow b-0 }{ \lim } \overset { \xi }{ \underset { a }{ \int } } f(x)dx=\underset { \xi \rightarrow b-0 }{ \lim }\Phi (\xi ) ,$$ а данный предел существует как предел монотонной и ограниченной функции \Phi (\xi ).

В случае если f(x) — неположительная, то рассмотрим функцию g(x) = -f(x) — неотрицательную. Из сходимости g(x) следует сходимость f(x), а для g(x) теорема уже доказана.

Спойлер

Изучим на сходимость следующий интеграл: \overset { 0 } { \underset { -1 }{ \int }} \frac {dx}{ \sqrt{ -x } } .
Особая точка — x_0 = 0. Функция \Phi (\xi)=\int_{-1}^{\xi}{\frac{dx}{\sqrt{-x}}} должна быть ограничена сверху. Найдем неопределенный интеграл
$$ \int \frac {dx}{ \sqrt{ -x } } = 2 \sqrt{-x} + С .$$
Из этого следует, что
$$ \overset { \xi } { \underset { -1 }{ \int }} \frac {dx}{ \sqrt{ -x } } = 2 \sqrt{-\xi} + 2 = 2(\sqrt{-\xi} + 1) .$$
Так как \xi \in \left [-1;0\right ], то функция \Phi (\xi) ограничена сверху числом 4, а значит интеграл сходится.

[свернуть]

Список Литературы

Критерий сходимости несобственных интегралов

Тест по теме: Критерий сходимости несобственных интегралов

После прочтения статьи, для закрепления материала, рекомендуется пройти тест по данной теме


Таблица лучших: Критерий сходимости несобственных интегралов

максимум из 30 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *